Skip to main content

Intensive #transmission in wild, migratory #birds drove rapid geographic #dissemination and repeated #spillovers of #H5N1 into #agriculture in North #America

Abstract

Since late 2021, a panzootic of highly pathogenic H5N1 avian influenza virus has driven significant morbidity and mortality in wild birds, domestic poultry, and mammals. In North America, infections in novel avian and mammalian species suggest the potential for changing ecology and establishment of new animal reservoirs. Outbreaks among domestic birds have persisted despite aggressive culling, necessitating a re-examination of how these outbreaks were sparked and maintained. To recover how these viruses were introduced and disseminated in North America, we analyzed 1,818 Hemagglutinin (HA) gene sequences sampled from North American wild birds, domestic birds and mammals from November 2021-September 2023 using Bayesian phylodynamic approaches. Using HA, we infer that the North American panzootic was driven by ~8 independent introductions into North America via the Atlantic and Pacific Flyways, followed by rapid dissemination westward via wild, migratory birds. Transmission was primarily driven by Anseriformes, shorebirds, and Galliformes, while species such as songbirds, raptors, and owls mostly acted as dead-end hosts. Unlike the epizootic of 2015, outbreaks in domestic birds were driven by ~46-113 independent introductions from wild birds, with some onward transmission. Backyard birds were infected ~10 days earlier on average than birds in commercial poultry production settings, suggesting that they could act as early warning signals for transmission upticks in a given area. Our findings support wild birds as an emerging reservoir for HPAI transmission in North America and suggest continuous surveillance of wild Anseriformes and shorebirds as crucial for outbreak inference. Future prevention of agricultural outbreaks may require investment in strategies that reduce transmission at the wild bird/agriculture interface, and investigation of backyard birds as putative early warning signs.

Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2024.12.16.628739v1

______

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

Stability of #influenza viruses in the #milk of #cows and #sheep

Abstract In late 2023, H5N1 high pathogenicity avian influenza (HPAIV) started circulating in dairy cattle in the USA . High viral titres were detected in milk from infected cows , raising concerns about onwards human infections . Although pasteurisation was shown to effectively inactivate influenza viruses in milk, unpasteurised milk still poses a risk of infection, both from occupational exposure in dairies and from the consumption of raw milk. We therefore assessed how long influenza viruses could remain infectious for in milk without heat inactivation. We examined the stability of a panel of influenza viruses in milk , including a contemporary H5N1 HPAIV and a variety of other influenza A and D viruses. We incubated viruses in cows' milk under laboratory conditions : at room temperature to simulate exposure in dairies and at 4°C to simulate exposure to refrigerated raw milk. Following an isolated report of H5N1 viral RNA being detected in milk from a sheep in the UK , we also c...

#Evidence of #Viremia in Dairy #Cows Naturally Infected with #Influenza A {#H5N1} Virus, #California, #USA

Abstract We confirmed influenza A virus (IAV) by PCR in serum from 18 cows on 3 affected dairy farms in California, USA . Our findings indicate the presence of viremia and might help explain IAV transmission dynamics and shedding patterns in cows. An understanding of those dynamics could enable development of IAV mitigation strategies. Source: US Centers for Disease Control and Prevention,  https://wwwnc.cdc.gov/eid/article/31/7/25-0134_article ____