Skip to main content

Posts

Showing posts with the label hendra virus

The intracellular #virus-host #interface of #henipaviruses

ABSTRACT The Henipavirus genus comprises five viral species, of which the prototype members, Hendra virus (HeV) and Nipah virus (NiV), are reported to infect humans. In humans and other spill-over hosts , HeV/NiV can cause severe respiratory and/or encephalitic disease , with mortality rates exceeding 50%; currently, there are no approved human vaccines and only limited therapeutic options . As members of the family Paramyxoviridae , henipaviruses have six “core” structural proteins and typically three additional accessory proteins that are expressed from the P gene. Several of these proteins are multifunctional, with roles in forming intracellular interfaces with the host (in particular, M, P, V, W, and C proteins), to modulate processes including antiviral responses, supporting viral replication. Understanding the molecular basis of these interfaces and their functions is critical to delineate the mechanisms of pathogenesis and may inform new strategies to combat infection and diseas...

Laboratory #Diagnosis of #Hendra and #Nipah: Two Emerging Zoonotic Diseases with One Health Significance

Abstract Hendra virus (HeV) and Nipah virus (NiV) are two highly pathogenic RNA viruses with zoonotic potential, which can cause severe diseases with high mortality rates (50–100%) in humans and animals . Given this context, these viruses are classified as Biosafety Level 4 (BSL-4) pathogens , thus limiting research studies. Despite the high case fatalities , there are currently no human vaccines available for either virus , owing in part to the limitations in research and hesitancy in funding . In the absence of widespread vaccination, diagnostic tests are crucial for the rapid identification of cases and disease surveillance. This review synthesizes current knowledge on the epidemiology, transmission dynamics, and pathogenesis of NiV and HeV to contextualize a detailed assessment of the available diagnostic tools. We examined molecular and serological assays, including RT-PCR, ELISA, and LAMP , highlighting sample sources, detection windows, and performance. Diagnostic considerations...

A #nanobody-based #therapeutic targeting #Nipah virus limits viral escape

Abstract Nipah virus (NiV) and Hendra virus (HeV) are highly pathogenic henipaviruses without approved human vaccines or therapies . Here, we report on a highly potent bispecific therapeutic that combines an anti-fusion glycoprotein nanobody with an anti-receptor-binding glycoprotein (RBP) antibody to deliver a dual-targeting biologic that is resistant to viral escape. We show that the nanobody, DS90, engages a unique, conserved site within the fusion glycoprotein of NiV and HeV and provides neutralization and complete protection from NiV disease . Bispecific engineering of DS90 with the anti-RBP monoclonal antibody m102.4 results in neutralization, elimination of viral escape and superior protection from NiV disease compared to leading monovalent approaches. These findings carry implications for the development of cross-neutralizing immunotherapies that limit the emergence of henipaviral escape mutants. Source: Nature Structural and Molecular Biology,  https://www.nature.com/artic...

Infectome analysis of #bat #kidneys from #Yunnan province, #China, reveals novel #henipaviruses related to #Hendra and #Nipah viruses and prevalent bacterial and eukaryotic microbes

Abstract Bats are natural reservoirs for a wide range of microorganisms, including many notable zoonotic pathogens. However, the composition of the infectome (i.e., the collection of viral, bacterial and eukaryotic microorganisms) within bat kidneys remains poorly understood. To address this gap, we performed meta-transcriptomic sequencing on kidney tissues from 142 bats , spanning ten species sampled at five locations in Yunnan province, China . This analysis identified 22 viral species , including 20 novel viruses , two of which represented newly discovered henipaviruses closely related to the highly pathogenic Hendra and Nipah viruses . These henipaviruses were found in the kidneys of bats inhabiting an orchard near villages, raising concerns about potential fruit contamination via bat urine and transmission risks to livestock or humans. Additionally, we identified a novel protozoan parasite, tentatively named Klossiella yunnanensis , along with two highly abundant bacterial species...

Genetic Diversity and #Geographic #Spread of #Henipaviruses

Abstract Henipaviruses, such as Hendra and Nipah viruses, are major zoonotic pathogens that cause encephalitis and respiratory infections in humans and animals . The recent emergence of Langya virus in China highlights the need to understand henipavirus host diversity and geographic spread to prevent future outbreaks. Our analysis of the National Center for Biotechnology Information Virus and VIRION databases revealed ≈1,117 henipavirus sequences and 142 complete genomes. Bats (64.7%) and shrews (11.7%) dominated the host species record, and the genera Pteropus and Crocidura contained key henipavirus hosts in Asia, Australia, and Africa . Henipaviruses found in the Eidolon bat genus exhibited the highest within-host genetic distance. Phylogenetic analysis revealed batborne and rodent- or shrew-derived henipaviruses diverged ≈11,000 years ago and the first known lineage originating in Eidolon genus bats ≈9,900 years ago. Pathogenic henipaviruses diverged from their ancestors 2,800–1,200...