Skip to main content

Immunization with a novel #RNA replicon #vaccine confers long-lasting #protection against #H5N1 avian #influenza virus in 24 #bird species

Abstract

Highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1 (clade 2.3.4.4b) have spread worldwide and caused the death of hundreds of millions of wild birds and domestic poultry. Moreover, spill over of H5N1 HPAIV from infected birds to more than 50 different mammalian species including humans has been recorded. While, licensed vaccines for protection of avian or mammalian species are not yet available, a few candidate vaccines are being trialled. Here, we report on the experimental vaccination of chickens and captive wild birds using a propagation-defective vesicular stomatitis virus (VSV), in which the essential envelope glycoprotein (G) protein gene was replaced by a modified hemagglutinin gene derived from a clade 2.3.4.4b H5N1 isolated in 2022 in the animal park of Bern, Switzerland. VSV∆G(H5mb) was produced on helper cells providing the VSV G protein in trans. Specific pathogen-free (SPF) chickens that were immunized twice via the intramuscular route with adjuvant-free VSV∆G(H5mb) replicon particles induced high levels of virus-neutralizing serum antibodies and were fully protected against lethal infection by H5N1 HPAIV (clade 2.3.4.4b). Notably, immunized animals did not shed challenge virus from the respiratory or gastrointestinal tract, suggesting that herd immunity can be achieved. The same vaccine was used to immunize a total of 317 captive wild birds at Bern Animal Park and Zoo Basel, representing 24 different species. No vaccine-associated side effects were observed. Birds without previous contact to H5Nx viruses produced high to very high H5-specific neutralizing antibody titers following the second immunization, while birds showing H5-specific antibodies prior to vaccination, already developed high neutralizing antibody titers after a single immunization. One year after vaccination, most animals still showed significant neutralizing antibody titers, indicating that VSV∆G(H5mb) is able to induce a long-lasting protective immune response. Our results indicate that VSV∆G(H5mb) is an extraordinary safe and highly efficacious vaccine to stop H5N1 replication in various avian species.

Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2025.01.15.633174v1

_____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

Stability of #influenza viruses in the #milk of #cows and #sheep

Abstract In late 2023, H5N1 high pathogenicity avian influenza (HPAIV) started circulating in dairy cattle in the USA . High viral titres were detected in milk from infected cows , raising concerns about onwards human infections . Although pasteurisation was shown to effectively inactivate influenza viruses in milk, unpasteurised milk still poses a risk of infection, both from occupational exposure in dairies and from the consumption of raw milk. We therefore assessed how long influenza viruses could remain infectious for in milk without heat inactivation. We examined the stability of a panel of influenza viruses in milk , including a contemporary H5N1 HPAIV and a variety of other influenza A and D viruses. We incubated viruses in cows' milk under laboratory conditions : at room temperature to simulate exposure in dairies and at 4°C to simulate exposure to refrigerated raw milk. Following an isolated report of H5N1 viral RNA being detected in milk from a sheep in the UK , we also c...

#Evidence of #Viremia in Dairy #Cows Naturally Infected with #Influenza A {#H5N1} Virus, #California, #USA

Abstract We confirmed influenza A virus (IAV) by PCR in serum from 18 cows on 3 affected dairy farms in California, USA . Our findings indicate the presence of viremia and might help explain IAV transmission dynamics and shedding patterns in cows. An understanding of those dynamics could enable development of IAV mitigation strategies. Source: US Centers for Disease Control and Prevention,  https://wwwnc.cdc.gov/eid/article/31/7/25-0134_article ____