Skip to main content

Quantitative #risk #assessment of #human #H5N1 #infection from #consumption of fluid #cow's #milk

Abstract

The spillover of highly pathogenic avian influenza H5N1 into dairy cattle has raised concerns over the safety of fluid milk. While no human foodborne infection has been reported, this strain has infected dozens of people and milk from infected cows is known to be infectious by ingestion in multiple other species. Investigation into the public health threat of this outbreak is critical. This study uses quantitative risk assessment (QRA) models to represent the United States raw and pasteurized fluid milk supply chains to estimate the risk of human infection from consumption of fluid cow's milk. These models were parameterized with literature emerging from this outbreak, then employed to estimate the H5N1 infection risk and evaluate multiple potential interventions aimed at reducing this risk. The median (5th, 95th percentiles) probabilities of infection per 240-mL serving of pasteurized, farmstore-purchased raw, or retail-purchased raw milk were 5.68E-15 (1.77E-16, 2.98E-13), 1.13E-03 (5.16E-06, 3.82E-02), and 1.02E-03 (5.20E-06, 3.64E-02), respectively. Our results demonstrate that pasteurization is highly effective at reducing H5N1 infection risk. Scenario analysis revealed quantitative real-time reverse transcriptase-polymerase chain reaction (qrRT-PCR) testing of bulk tank milk to be an effective method for reducing risk from raw milk. Additionally, we identify knowledge gaps related to human H5N1 dose-response by ingestion and raw milk consumption patterns. These findings emphasize the importance of pasteurization in protecting public health and will inform the implementation of control strategies to reduce the risk of human H5N1 infection from raw milk.

Source: MedRxIV, https://www.medrxiv.org/content/10.1101/2024.12.20.24319470v2

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...