Skip to main content

Molecular #patterns of #matrix protein 1 (M1): A strong predictor of adaptive #evolution in #H9N2 avian #influenza viruses

Significance

The dominance of the H9N2 subtype of avian influenza virus (AIV) within the influenza A virus family has raised questions regarding the factors influencing its epidemiological dominance. This study concentrates on the role of five major evolutionary patterns of the matrix protein M1 in the replication and transmission of H9N2 AIVs. The findings indicate a strong correlation between the epidemiological dominance of H9N2 AIVs and the specific M1 patterns, particularly M1P5. It highlights the significance of genetic patterns in M1 for understanding the adaptive differences and turnover of epidemiological dominant H9N2 AIVs.


Abstract

The H9N2 subtype of avian influenza virus (AIV) emerges as a significant member of the influenza A virus family. However, the varying degrees of epidemiological dominance among different lineages or clades of H9N2 AIVs have not been fully clarified. The matrix protein M1, a key structural component of the virion, plays a crucial role in maintaining the viral structure and lifecycle. To elucidate the intrinsic relationship between the genetic patterns of M1 and the adaptive dynamics of H9N2 AIVs, this study focused on the five major evolutionary patterns of M1 and conducted in vitro and in vivo investigations from the perspectives of vRNP release after viral uncoating, polymerase activity, mRNA and vRNA levels, the nuclear export of vRNPs, plasma membrane–binding capacity, proliferation capacity, growth competitiveness, and transmission potential. The results revealed a strong correlation between the epidemiological dominance of H9N2 AIVs and the specific patterns of M1, with M1P5 standing out as particularly significant. This finding highlights the pivotal influence of the M1 gene patterns on the replication and transmission dynamics of H9N2 AIVs, thereby offering valuable insights into the mechanisms driving differences in adaptive evolution and shifts in epidemiological dominance within the H9N2 AIV population.

Source: Proceedings of the National Academy of Sciences of the United States of America, https://www.pnas.org/doi/10.1073/pnas.2423983122

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...