Skip to main content

#Recommendations for the #surveillance of #influenza A(#H5N1) in #cattle

Summary 

Beyond domestic poultry, influenza A(H5N1) of clade 2.3.4.4b has spread to almost all regions, infecting a wide range of wild birds, marine and terrestrial mammals, and recently, cattle in the United States of America. When an influenza virus is circulating in both avian and mammalian populations, the likelihood of spillover to humans and risk to public health may increase. The reported events of the influenza A(H5N1) virus among terrestrial and marine mammals in several countries, including the recent cases detected in the United States of America, have made it necessary to improve virus detection in cattle and other susceptible mammals and closely monitor virus evolution and adaptation to extraordinary hosts. These recommendations aim to support countries in planning surveillance for influenza A(H5N1) in cattle to enhance early detection, to generate evidence-based information to mitigate the impacts of spillover from birds to cattle, and to prevent transmission between cattle herds. Additionally, these recommendations aim to assist countries, especially low- and middle-income countries, in optimizing the use of limited resources to achieve their surveillance objectives through leveraging existing surveillance programmes. The Food and Agriculture Organization of the United Nations (FAO) recommends that all countries maintain passive surveillance for A(H5N1) to rapidly detect spillover events in non-avian species, using an appropriate case definition alongside education and outreach to relevant stakeholders to improve awareness of this emerging disease. Additionally, countries may choose to use other surveillance approaches to leverage routine and opportunistic sampling to evaluate the health of cattle populations. Event-based surveillance may also be a helpful tool in early detection. For at-risk countries,1 targeted or risk-based surveillance approaches can be used to more closely assess cattle health at the interface with poultry or wild birds, investigate suspected outbreaks in cattle, and demonstrate freedom from infection. These recommendations have a broad application to other susceptible farmed mammals.

(...)


Source: FAO, https://openknowledge.fao.org/items/4c29fcb1-67e2-4a37-a780-cb4fe0c9f253

_____

Comments

Popular posts from this blog

#USA, Two more #human cases of #H5N1 #birdflu reported in #California

Two cases of bird flu have been reported in San Joaquin County, California, local health officials said. According to a press release issued Friday and reported by the Sacramento Bee , health officials with San Joaquin County Public Health Services said both cases were farm workers who were exposed to infected animals . Both people are showing mild symptoms and are recovering, officials said, adding that there are 34 total confirmed cases across California. In a warning posted on Facebook, health officials said bird flu was “spreading in several farms such as poultry and cattle” and urged residents to take precautions to prevent the spread of the disease. Precautions include the use of protective equipment when handling poultry, dairy cattle or other animals that may be infected, and when handling raw and unpasteurized milk. (...) There are currently 60 confirmed cases of bird flu in the country . While most of the cases are in California , other states with confirmed cases include Col...

Viral #sepsis: #diagnosis, clinical #features, #pathogenesis, and #clinical considerations

Abstract Sepsis , characterized as life-threatening organ dysfunction resulting from dysregulated host responses to infection , remains a significant challenge in clinical practice . Despite advancements in understanding host-bacterial interactions , molecular responses, and therapeutic approaches, the mortality rate associated with sepsis has consistently ranged between 10 and 16%. This elevated mortality highlights critical gaps in our comprehension of sepsis etiology. Traditionally linked to bacterial and fungal pathogens, recent outbreaks of acute viral infections , including Middle East respiratory syndrome coronavirus ( MERS-CoV ), influenza virus, and severe acute respiratory syndrome coronavirus 2 ( SARS-CoV-2 ), among other regional epidemics, have underscored the role of viral pathogenesis in sepsis, particularly when critically ill patients exhibit classic symptoms indicative of sepsis. However, many cases of viral-induced sepsis are frequently underdiagnosed because standar...

Rapid #Surge of #Reassortant A(#H1N1) #Influenza Viruses in Danish #Swine and their #Zoonotic Potential

 Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2024.12.11.627926v1?rss=1  Abstract In 2018, a single detection of a novel reassortant swine influenza A virus (swIAV) was made in Denmark . The hemagglutinin (HA) of the virus was from the H1N1 pandemic 2009 (H1N1pdm09) lineage and the neuraminidase (NA) from the H1N1 Eurasian avian-like swine lineage (H1N1av). By 2022, the novel reassortant virus (H1pdm09N1av) constituted 27 % of swIAVs identified through the Danish passive swIAV surveillance program. Sequencing detected two H1pdm09N1av genotypes ; Genotype 1 contained an internal gene cassette of H1N1pdm09 origin , Genotype 2 differed by carrying an NS gene segment of H1N1av origin . The internal gene cassette of Genotype 2 became increasingly dominant, not only in the H1pdm09N1av population, but also in other Danish enzootic swIAV subtypes . Phylogenetic analysis of the HA genes from H1pdm09N1av viruses revealed a monophyletic source , a higher substitution rat...