Skip to main content

#Global #production #capacity of seasonal and #pandemic #influenza #vaccines in 2023

Abstract

Introduction

Vaccination is a critical part of the response to an influenza pandemic. Future influenza pandemics will likely leverage existing production processes and manufacturing facilities for seasonal influenza to make pandemic vaccines. Therefore, pandemic influenza vaccine response is heavily dependent on seasonal influenza vaccine production capacity.

Methods

WHO monitors global vaccine production to inform pandemic preparedness by regularly surveying influenza vaccine manufacturers to estimate both seasonal and potential pandemic vaccine production capacity overall and by region, vaccine type, and manufacturing process. The last survey estimates were for 2019; here, we report updated estimates based on data from the 2023 survey and compare to estimates from previous surveys.

Results

Our analysis estimates that annual seasonal influenza vaccine production capacity has remained relatively stable since 2019 at 1.53 billion doses and pandemic vaccine capacity at 4.13 and 8.26 billion doses for moderate and best case scenarios, respectively. Over 80 % of seasonal and pandemic vaccine production capacity relies on embryonated eggs, and inactivated influenza virus vaccines comprise the majority of vaccine supply. There is influenza vaccine manufacturing capacity in all WHO regions, except for the African Region, though influenza vaccine production is concentrated in high and upper-middle income countries. The ability to achieve maximum production capacity could be hindered by access to eggs and other ancillary supplies.

Conclusions

While influenza vaccine production capacity has been sustained since 2019, significant gaps persist in its distribution, especially in low and lower-middle income countries, and most notably in the African region. This imbalance in production could result in unequal access to vaccines in the event of a pandemic. Strengthening local vaccine manufacturing, promoting seasonal vaccination programmes, and investing in research and development of next-generation influenza vaccines or improved production platforms are essential to improve pandemic preparedness, sustain the influenza vaccine market, and enable more robust local responses.

_____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

Stability of #influenza viruses in the #milk of #cows and #sheep

Abstract In late 2023, H5N1 high pathogenicity avian influenza (HPAIV) started circulating in dairy cattle in the USA . High viral titres were detected in milk from infected cows , raising concerns about onwards human infections . Although pasteurisation was shown to effectively inactivate influenza viruses in milk, unpasteurised milk still poses a risk of infection, both from occupational exposure in dairies and from the consumption of raw milk. We therefore assessed how long influenza viruses could remain infectious for in milk without heat inactivation. We examined the stability of a panel of influenza viruses in milk , including a contemporary H5N1 HPAIV and a variety of other influenza A and D viruses. We incubated viruses in cows' milk under laboratory conditions : at room temperature to simulate exposure in dairies and at 4°C to simulate exposure to refrigerated raw milk. Following an isolated report of H5N1 viral RNA being detected in milk from a sheep in the UK , we also c...

#Evidence of #Viremia in Dairy #Cows Naturally Infected with #Influenza A {#H5N1} Virus, #California, #USA

Abstract We confirmed influenza A virus (IAV) by PCR in serum from 18 cows on 3 affected dairy farms in California, USA . Our findings indicate the presence of viremia and might help explain IAV transmission dynamics and shedding patterns in cows. An understanding of those dynamics could enable development of IAV mitigation strategies. Source: US Centers for Disease Control and Prevention,  https://wwwnc.cdc.gov/eid/article/31/7/25-0134_article ____