Skip to main content

A low pathogenic avian #influenza A/Mallard/South Korea/KNU2019-34/2019 (#H1N1) virus has the potential to increase the #mammalian #pathogenicity

Abstract

Influenza, a highly contagious respiratory infectious disease caused by an influenza virus, is a threat to public health worldwide. Avian influenza viruses (AIVs) have the potential to cause the next pandemic by crossing the species barrier through mutation of viral genome. Here, we investigated the pathogenicity of AIVs obtained from South Korea and Mongolia during 2018–2019 by measuring viral titers in the lungs and extrapulmonary organs of mouse models. In addition, we assessed the pathogenicity of AIVs in ferret models. Moreover, we compared the ability of viruses to replicate in mammalian cells, as well as the receptor-binding preferences of AIV isolates. Genetic analyses were finally performed to identify the genetic relationships and amino acid substitutions between viral proteins during mammalian adaptation. Of the 24 AIV isolates tested, A/Mallard/South Korea/KNU2019-34/2019 (KNU19-34; H1N1) caused severe bodyweight loss and high mortality in mice. The virus replicated in the lungs, kidneys, and heart. Importantly, KNU19-34-infected ferrets showed high viral loads in both nasal washes and lungs. KNU19-34 replicated rapidly in A549 and bound preferentially to human like α2,6-linked sialic acids rather than to avian-like α2,3-linked sialic acids, similar to the pandemic A/California/04/2009 (H1N1) strain. Gene segments of KNU19-34 were distributed in Egypt and Asia lineages from 2015 to 2018, and the virus had several amino acid substitutions compared to H1N1 AIV isolates that were non-pathogenic in mice. Collectively, the data suggest that KNU19-34 has zoonotic potential and the possibility of new mutations responsible for mammalian adaptation.

Source: Virologica Sinica, https://www.sciencedirect.com/science/article/pii/S1995820X24002062?via%3Dihub

_____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...