Skip to main content

Viral #sepsis: #diagnosis, clinical #features, #pathogenesis, and #clinical considerations

Abstract

Sepsis, characterized as life-threatening organ dysfunction resulting from dysregulated host responses to infection, remains a significant challenge in clinical practice. Despite advancements in understanding host-bacterial interactions, molecular responses, and therapeutic approaches, the mortality rate associated with sepsis has consistently ranged between 10 and 16%. This elevated mortality highlights critical gaps in our comprehension of sepsis etiology. Traditionally linked to bacterial and fungal pathogens, recent outbreaks of acute viral infections, including Middle East respiratory syndrome coronavirus (MERS-CoV), influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), among other regional epidemics, have underscored the role of viral pathogenesis in sepsis, particularly when critically ill patients exhibit classic symptoms indicative of sepsis. However, many cases of viral-induced sepsis are frequently underdiagnosed because standard evaluations typically exclude viral panels. Moreover, these viruses not only activate conventional pattern recognition receptors (PRRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) but also initiate primary antiviral pathways such as cyclic guanosine monophosphate adenosine monophosphate (GMP-AMP) synthase (cGAS)-stimulator of interferon genes (STING) signaling and interferon response mechanisms. Such activations lead to cellular stress, metabolic disturbances, and extensive cell damage that exacerbate tissue injury while leading to a spectrum of clinical manifestations. This complexity poses substantial challenges for the clinical management of affected cases. In this review, we elucidate the definition and diagnosis criteria for viral sepsis while synthesizing current knowledge regarding its etiology, epidemiology, and pathophysiology, molecular mechanisms involved therein as well as their impact on immune-mediated organ damage. Additionally, we discuss clinical considerations related to both existing therapies and advanced treatment interventions, aiming to enhance the comprehensive understanding surrounding viral sepsis.

Source: Military Medical Research, https://mmrjournal.biomedcentral.com/articles/10.1186/s40779-024-00581-0 

____

Comments

Popular posts from this blog

#USA, Two more #human cases of #H5N1 #birdflu reported in #California

Two cases of bird flu have been reported in San Joaquin County, California, local health officials said. According to a press release issued Friday and reported by the Sacramento Bee , health officials with San Joaquin County Public Health Services said both cases were farm workers who were exposed to infected animals . Both people are showing mild symptoms and are recovering, officials said, adding that there are 34 total confirmed cases across California. In a warning posted on Facebook, health officials said bird flu was “spreading in several farms such as poultry and cattle” and urged residents to take precautions to prevent the spread of the disease. Precautions include the use of protective equipment when handling poultry, dairy cattle or other animals that may be infected, and when handling raw and unpasteurized milk. (...) There are currently 60 confirmed cases of bird flu in the country . While most of the cases are in California , other states with confirmed cases include Col...

Rapid #Surge of #Reassortant A(#H1N1) #Influenza Viruses in Danish #Swine and their #Zoonotic Potential

 Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2024.12.11.627926v1?rss=1  Abstract In 2018, a single detection of a novel reassortant swine influenza A virus (swIAV) was made in Denmark . The hemagglutinin (HA) of the virus was from the H1N1 pandemic 2009 (H1N1pdm09) lineage and the neuraminidase (NA) from the H1N1 Eurasian avian-like swine lineage (H1N1av). By 2022, the novel reassortant virus (H1pdm09N1av) constituted 27 % of swIAVs identified through the Danish passive swIAV surveillance program. Sequencing detected two H1pdm09N1av genotypes ; Genotype 1 contained an internal gene cassette of H1N1pdm09 origin , Genotype 2 differed by carrying an NS gene segment of H1N1av origin . The internal gene cassette of Genotype 2 became increasingly dominant, not only in the H1pdm09N1av population, but also in other Danish enzootic swIAV subtypes . Phylogenetic analysis of the HA genes from H1pdm09N1av viruses revealed a monophyletic source , a higher substitution rat...