Abstract
XEC and KP.3.1.1 have surpassed KP.3 to become the globally dominant lineages due to their unique NTD mutations. However, several emerging JN.1 sublineages, such as LF.7.2.1, MC.10.1, NP.1, and, especially, LP.8.1, have demonstrated superior growth advantages compared to XEC. It is critical to access the virological and antigenic characteristics of these emerging SARS-CoV-2 variants. Here, we found that LF.7.2.1 is significantly more immune invasive than XEC, primarily due to the A475V mutation, which enabled the evasion of Class 1 neutralizing antibodies. However, LF.7.2.1's weak ACE2 binding affinity substantially impaired its fitness. Likewise, MC.10.1 and NP.1 exhibited strong antibody immune evasion due to the A435S mutation, but their limited ACE2 engagement efficiency restricted their growth advantage, suggesting that A435S may regulate the Spike conformation, similar to the NTD glycosylation mutations found in KP.3.1.1 and XEC. Most importantly, we found that LP.8.1 showed comparable humoral immune evasion to XEC but demonstrated much increased ACE2 engagement efficiency, supporting its rapid growth. These findings highlight the trade-off between immune evasion and ACE2 engagement efficiency in SARS-CoV-2 evolution, and underscore the importance of monitoring LP.8.1 These findings highlight the trade-off between immune evasion and ACE2 engagement efficiency in SARS-CoV-2 evolution, and underscore the importance of monitoring LP.8.1 and its descend lineages.
Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2024.12.27.630350v1?rss=1
_____
Comments
Post a Comment