Skip to main content

Development of avian #influenza A(#H5) virus #datasets for #Nextclade enables rapid and accurate #clade assignment

Abstract

The ongoing panzootic of highly pathogenic avian influenza (HPAI) A(H5) viruses is the largest in history, with unprecedented transmission to multiple mammalian species. Avian influenza A viruses of the H5 subtype circulate globally among birds and are classified into distinct clades based on their hemagglutinin (HA) genetic sequences. Thus, the ability to accurately and rapidly assign clades to newly sequenced isolates is key to surveillance and outbreak response. Co-circulation of endemic, low pathogenic avian influenza (LPAI) A(H5) lineages in North American and European wild birds necessitates the ability to rapidly and accurately distinguish between infections arising from these lineages and epizootic HPAI A(H5) viruses. However, currently available clade assignment tools are limited and often require command line expertise, hindering their utility for public health surveillance labs. To address this gap, we have developed datasets to enable A(H5) clade assignments with Nextclade, a drag-and-drop tool originally developed for SARS-CoV-2 genetic clade classification. Using annotated reference datasets for all historical A(H5) clades, clade 2.3.2.1 descendants, and clade 2.3.4.4 descendants provided by the Food and Agriculture Organization/World Health Organization/World Organisation for Animal Health (FAO/WHO/WOAH) H5 Working Group, we identified clade-defining mutations for every established clade to enable tree-based clade assignment. We then created three Nextclade datasets which can be used to assign clades to A(H5) HA sequences and call mutations relative to reference strains through a drag-and-drop interface. Nextclade assignments were benchmarked with 19,834 unique sequences not in the reference set using a pre-released version of LABEL, a well-validated and widely used command line software. Prospective assignment of new sequences with Nextclade and LABEL produced very well-matched assignments (match rates of 97.8% and 99.1% for the 2.3.2.1 and 2.3.4.4 datasets, respectively). The all-clades dataset also performed well (94.8% match rate) and correctly distinguished between all HPAI and LPAI strains. This tool additionally allows for the identification of polybasic cleavage site sequences and potential N-linked glycosylation sites. These datasets therefore provide an alternative, rapid method to accurately assign clades to new A(H5) HA sequences, with the benefit of an easy-to-use browser interface.

Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2025.01.07.631789v1

_____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...