Skip to main content

#Antiviral Mechanisms and #Preclinical Evaluation of #Amantadine #Analogs that Continue to Inhibit #Influenza A Viruses with M2S31N-Based Drug Resistance

Abstract

To better manage seasonal and pandemic influenza infections, new drugs are needed with enhanced activity against amantadine- and rimantadine-resistant influenza A virus (IAV) strains containing the S31N variant of the viral M2 ion channel (M2S31N). Here we tested 36 amantadine analogs against a panel of viruses containing either M2S31N or the parental, M2 S31 wild-type variant (M2WT). We found that several analogs, primarily those with sizeable lipophilic adducts, inhibited up to three M2S31N-containing viruses with activities at least 5-fold lower than rimantadine, without inhibiting M2S31N proton currents or modulating endosomal pH. While M2WT viruses in passaging studies rapidly gained resistance to these analogs through the established M2 mutations V27A and/or A30T, resistance development was markedly slower for M2S31N viruses and did not associate with additional M2 mutations. Instead, a subset of analogs, exemplified by 2-propyl-2-adamantanamine (38), but not 2-(1-adamantyl)piperidine (26), spiro[adamantane-2,2’-pyrrolidine] (49), or spiro[adamantane-2,2’-piperidine] (60), inhibited cellular entry of infectious IAV following pre-treatment and/or H1N1 pseudovirus entry. Conversely, an overlapping subset of the most lipophilic analogs including compounds 26, 49, 60, and others, disrupted viral M2-M1 protein colocalization required for intracellular viral assembly and budding. Finally, a pilot toxicity study in mice demonstrated that 38 and 49 were tolerated at 30 mg/kg. Together, these results indicate that amantadine analogs act on multiple, complementary mechanisms to inhibit replication of M2S31N viruses.

Source: Antiviral Research, https://www.sciencedirect.com/science/article/abs/pii/S0166354225000300?via%3Dihub

_____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...