Skip to main content

Modeling suggests #SARS-CoV-2 #rebound after #nirmatrelvir-ritonavir #treatment is driven by target cell preservation coupled with incomplete viral clearance

ABSTRACT

In a subset of SARS-CoV-2-infected individuals treated with the antiviral nirmatrelvir-ritonavir, the virus rebounds following treatment. The mechanisms driving this rebound are not well understood. We used a mathematical model to describe the longitudinal viral load dynamics of 51 individuals treated with nirmatrelvir-ritonavir, 20 of whom rebounded. Target cell preservation, either by a robust innate immune response or initiation of N-R near the time of symptom onset, coupled with incomplete viral clearance, appears to be the main factor leading to viral rebound. Moreover, the occurrence of viral rebound is likely influenced by the time of treatment initiation relative to the progression of the infection, with earlier treatments leading to a higher chance of rebound. A comparison with an untreated cohort suggests that early treatments with nirmatrelvir-ritonavir may be associated with a delay in the onset of an adaptive immune response. Nevertheless, our model demonstrates that extending the course of nirmatrelvir-ritonavir treatment to a 10-day regimen may greatly diminish the chance of rebound in people with mild-to-moderate COVID-19 and who are at high risk of progression to severe disease. Altogether, our results suggest that in some individuals, a standard 5-day course of nirmatrelvir-ritonavir starting around the time of symptom onset may not completely eliminate the virus. Thus, after treatment ends, the virus can rebound if an effective adaptive immune response has not fully developed. These findings on the role of target cell preservation and incomplete viral clearance also offer a possible explanation for viral rebounds following other antiviral treatments for SARS-CoV-2.

Source: Journal of Virology, https://journals.asm.org/doi/full/10.1128/jvi.01623-24?af=R

_____

Comments

Popular posts from this blog

#USA, APHIS Confirms {Avian #Influenza #H5N1} #D11 #Genotype in Dairy #Cattle in #Nevada

On January 31, 2025, the USDA Animal and Plant Health Inspection Service (APHIS) National Veterinary Services Laboratories (NVSL) confirmed by whole genome sequence the first detection of highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.4.4b, genotype D1.1 in dairy cattle .  This confirmation was a result of State tracing and investigation, following an initial detection on silo testing under the USDA’s National Milk Testing Strategy (NMTS) in Nevada.  USDA APHIS continues to work with the Nevada Department of Agriculture by conducting additional on-farm investigation, testing, and gathering additional epidemiological information to better understand this detection and limit further disease spread.  This is the first detection of this virus genotype in dairy cattle (all previous detections in dairy cattle have been HPAI H5N1 clade 2.3.4.4b, genotype B3.13 ).  Genotype D1.1 represents the predominant genotype in the North American flyways this past fall an...

#USA, After #Birdflu Detected in Local #Cat, County #Health Officials Say #Pet Owners Should Contact Veterinarian When Their Pets are Sick

Redwood City — State veterinary and health officials have confirmed a case of H5N1 (bird flu) in a domestic stray cat in San Mateo County.  The infection, which is not related to the recent instance of bird flu in a backyard flock , was found in a stray cat in Half Moon Bay that had been taken in by a family .  When it showed symptoms, they took it to Peninsula Humane Society, whose veterinarians examined it and requested testing. Lab results confirmed H5N1.  It is not known how the cat was infected and it was euthanized due to its condition. Cats may be exposed to bird flu by consuming infected bird , being in environments contaminated with the virus and consuming unpasteurized milk from infected cows or raw food. Inside domestic animals, such as cats and dogs, that go outside are also at risk of infection.​​​​​​​ According to the Centers for Disease Control and Prevention, the risk of cats spreading H5N1 to people is extremely low, though it is possible for cats to spre...

#USA, Novel #Influenza A #H5N1 Virus: One Pediatric Case in #California {FluView}

 {Excerpt} One confirmed human infection with influenza A(H5) virus was reported to CDC this week. To date, human-to-human transmission of influenza A(H5) virus has not been identified in the United States. This case was reported by the California Department of Public Health and occurred in a child less than 18 years old with no known contact with influenza A(H5N1) virus-infected animals or humans . The investigation into the source of infection for this case is ongoing , and no human-to-human transmission has been identified. A specimen from the individual was tested at a public health laboratory using the CDC influenza A(H5) assay before being sent to CDC for further testing. The specimen was positive for influenza A(H5) virus using diagnostic RT-PCR at CDC. Additional analysis including genetic sequencing is underway. In response to this detection, additional case investigation and contact monitoring are being conducted by public health officials in California. There have now be...