Skip to main content

Unexpected #Pediatric #Cluster of #Enterovirus C105, #Verona, #Italy

Abstract

In an epidemiologic investigation of Enterovirus (EV) infections in a Verona hospital, September 2022–September 2024, we detected EV-C105 in six pediatric patients with upper respiratory symptoms between March and May 2023. The primary objective was to describe the local incidence of EV cases. The secondary objective was to perform Sanger’s genomic characterization and the whole-genome sequencing (WGS) of EV-C105. The proportion of positive EV results was calculated based on routine molecular method testing. An available cohort of 114 underwent Sanger sequencing, and the six EV-C105 were characterized with WGS. Overall, 96% EV results were from the upper respiratory tract. The total proportion of positives in children was 83%. Out of the typed 114, 90% were Rhinoviruses and 9%, EVs. Notably, six pediatric cases were EV-C105, placing together in a unique cluster with 99% of nucleotides belonging to the European lineage with the highest Average Nucleotide Identity, including EV-C104, EV-C109, and EV-C118. Our data describes the first cluster indicating that EV-C105 incidence may be higher than previously estimated. However, a limitation for affirming this hypothesis is the lack of a more in-depth epidemiological investigation on a larger case series with the possibility of including data from coordinated laboratories.

Source: Viruses, https://www.mdpi.com/1999-4915/17/2/255

_____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

Stability of #influenza viruses in the #milk of #cows and #sheep

Abstract In late 2023, H5N1 high pathogenicity avian influenza (HPAIV) started circulating in dairy cattle in the USA . High viral titres were detected in milk from infected cows , raising concerns about onwards human infections . Although pasteurisation was shown to effectively inactivate influenza viruses in milk, unpasteurised milk still poses a risk of infection, both from occupational exposure in dairies and from the consumption of raw milk. We therefore assessed how long influenza viruses could remain infectious for in milk without heat inactivation. We examined the stability of a panel of influenza viruses in milk , including a contemporary H5N1 HPAIV and a variety of other influenza A and D viruses. We incubated viruses in cows' milk under laboratory conditions : at room temperature to simulate exposure in dairies and at 4°C to simulate exposure to refrigerated raw milk. Following an isolated report of H5N1 viral RNA being detected in milk from a sheep in the UK , we also c...

#Evidence of #Viremia in Dairy #Cows Naturally Infected with #Influenza A {#H5N1} Virus, #California, #USA

Abstract We confirmed influenza A virus (IAV) by PCR in serum from 18 cows on 3 affected dairy farms in California, USA . Our findings indicate the presence of viremia and might help explain IAV transmission dynamics and shedding patterns in cows. An understanding of those dynamics could enable development of IAV mitigation strategies. Source: US Centers for Disease Control and Prevention,  https://wwwnc.cdc.gov/eid/article/31/7/25-0134_article ____