Skip to main content

Heterogeneity across #mammalian- and #avian-origin A(#H1N1) #influenza viruses influences viral infectivity following incubation with host #bacteria from the human respiratory tract

Abstract

Influenza A viruses (IAV) are primarily transmitted between mammals by the respiratory route, and encounter bacteria in the respiratory tract before infecting susceptible epithelial cells. Previous studies have shown that mammalian-origin IAV can bind to the surface of different bacterial species and purified bacterial lipopolysaccharides (LPS), but despite the broad host range of IAV, few studies have included avian-origin IAV in these assessments. Since IAV that circulate in humans and birds are well-adapted to replication in the human respiratory and avian gastrointestinal tracts, respectively, we investigated the ability of multiple human and avian A(H1N1) IAV to associate with bacteria and their surface components isolated from both host niches. Binding interactions were assessed with microbial glycan microarrays, revealing that seasonal and avian IAV strains exhibited binding diversity to multiple bacterial glycans at the level of the virus and the bacterium, independent of sialic acid binding preference of the virus. Co-incubation of diverse IAV with LPS derived from Pseudomonas aeruginosa (P. aeruginosa), a respiratory tract bacterium, led to reduced retention of viral infectivity in a temperature dependent manner which was not observed when co-incubated with LPS from Escherichia coli, a gut bacterial isolate. Reduction of viral infectivity was supported by disruption of IAV virions following incubation with P. aeruginosa LPS using electron microscopy. Our findings highlight that both human and avian IAV can bind to bacterial surface components from different host sites resulting in differential functional interactions early after binding, suggesting the need to study IAV-bacteria interactions at the host range interface.

Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2025.03.28.645935v1

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...