Skip to main content

Quantifying #viral #pandemic #potential from experimental #transmission #studies

Abstract

In the past two decades, two pandemic respiratory viruses (H1N1 and SARS-CoV-2) have emerged via spillover from animal reservoirs. In an effort to avert future pandemics, surveillance studies aimed at identifying zoonotic viruses at high risk of spilling over into humans act to monitor the `viral chatter' at the animal-human interface. These studies are hampered, however, by the diversity of zoonotic viruses and the limited tools available to assess pandemic risk. Methods currently in use include the characterization of candidate viruses using in vitro laboratory assays and experimental transmission studies in animal models. However, transmission experiments yield relatively low-resolution outputs that are not immediately translatable to projections of viral dynamics at the level of a host population. To address this gap, we present an analytical framework to extend the use of measurements from experimental transmission studies to generate more quantitative risk assessments. Specifically, we develop modeling approaches for estimating transmission parameters and gauging population-level emergence risk using within-host viral titer data from index and contact animals. To illustrate the use of these approaches, we apply them to two recently published influenza A virus (IAV) ferret transmission experiments: one using influenza A/California/07/2009 (H1N1pdm09) and one using influenza A/Hong Kong/1/1968 (H3N2). We find that, when controlling for viral titers, the H3N2 virus tends to be less transmissible than the H1N1 virus. Because of this difference in infectiousness and more robust replication of H1N1 in ferrets, we further find that the H1N1 virus has a higher projected reproduction number than the H3N2 virus and therefore more likely to cause an epidemic following introduction. Incorporating estimates of the generation interval for each virus, we find that the H1N1 virus has a higher projected epidemic growth rate than the H3N2 virus. The methods we present to assess relative pandemic risk across viral isolates can be used to improve quantitative risk assessment of other emerging viruses of pandemic concern.

Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2025.03.24.645081v1

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

Stability of #influenza viruses in the #milk of #cows and #sheep

Abstract In late 2023, H5N1 high pathogenicity avian influenza (HPAIV) started circulating in dairy cattle in the USA . High viral titres were detected in milk from infected cows , raising concerns about onwards human infections . Although pasteurisation was shown to effectively inactivate influenza viruses in milk, unpasteurised milk still poses a risk of infection, both from occupational exposure in dairies and from the consumption of raw milk. We therefore assessed how long influenza viruses could remain infectious for in milk without heat inactivation. We examined the stability of a panel of influenza viruses in milk , including a contemporary H5N1 HPAIV and a variety of other influenza A and D viruses. We incubated viruses in cows' milk under laboratory conditions : at room temperature to simulate exposure in dairies and at 4°C to simulate exposure to refrigerated raw milk. Following an isolated report of H5N1 viral RNA being detected in milk from a sheep in the UK , we also c...

#Evidence of #Viremia in Dairy #Cows Naturally Infected with #Influenza A {#H5N1} Virus, #California, #USA

Abstract We confirmed influenza A virus (IAV) by PCR in serum from 18 cows on 3 affected dairy farms in California, USA . Our findings indicate the presence of viremia and might help explain IAV transmission dynamics and shedding patterns in cows. An understanding of those dynamics could enable development of IAV mitigation strategies. Source: US Centers for Disease Control and Prevention,  https://wwwnc.cdc.gov/eid/article/31/7/25-0134_article ____