Skip to main content

Quantifying #viral #pandemic #potential from experimental #transmission #studies

Abstract

In the past two decades, two pandemic respiratory viruses (H1N1 and SARS-CoV-2) have emerged via spillover from animal reservoirs. In an effort to avert future pandemics, surveillance studies aimed at identifying zoonotic viruses at high risk of spilling over into humans act to monitor the `viral chatter' at the animal-human interface. These studies are hampered, however, by the diversity of zoonotic viruses and the limited tools available to assess pandemic risk. Methods currently in use include the characterization of candidate viruses using in vitro laboratory assays and experimental transmission studies in animal models. However, transmission experiments yield relatively low-resolution outputs that are not immediately translatable to projections of viral dynamics at the level of a host population. To address this gap, we present an analytical framework to extend the use of measurements from experimental transmission studies to generate more quantitative risk assessments. Specifically, we develop modeling approaches for estimating transmission parameters and gauging population-level emergence risk using within-host viral titer data from index and contact animals. To illustrate the use of these approaches, we apply them to two recently published influenza A virus (IAV) ferret transmission experiments: one using influenza A/California/07/2009 (H1N1pdm09) and one using influenza A/Hong Kong/1/1968 (H3N2). We find that, when controlling for viral titers, the H3N2 virus tends to be less transmissible than the H1N1 virus. Because of this difference in infectiousness and more robust replication of H1N1 in ferrets, we further find that the H1N1 virus has a higher projected reproduction number than the H3N2 virus and therefore more likely to cause an epidemic following introduction. Incorporating estimates of the generation interval for each virus, we find that the H1N1 virus has a higher projected epidemic growth rate than the H3N2 virus. The methods we present to assess relative pandemic risk across viral isolates can be used to improve quantitative risk assessment of other emerging viruses of pandemic concern.

Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2025.03.24.645081v1

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...