Skip to main content

Structural basis of #receptor-binding #adaptation of #human-infecting #H3N8 #influenza A virus

ABSTRACT

Recent avian-origin H3N8 influenza A virus (IAV) that have infected humans pose a potential public health concern. Alterations in the viral surface glycoprotein, hemagglutinin (HA), are typically required for IAVs to cross the species barrier for adaptation to a new host, but whether H3N8 has adapted to infect humans remains elusive. The observation of a degenerative codon in position 228 of HA in human H3N8 A/Henan/4-10/2022 protein sequence, which could be residue G or S, suggests a dynamic viral adaptation for human infection. Previously, we found this human-isolated virus has shown the ability to transmit between ferrets via respiratory droplets, with the HA-G228S substitution mutation emerging as a critical determinant for the airborne transmission of the virus in ferrets. Here, we investigated the receptor-binding properties of these two H3N8 HAs. Our results showed H3N8 HAs have dual receptor-binding properties with a preference for avian receptor binding, and G228S slightly increased binding to human receptors. Cryo-electron microscopy structures of the two H3N8 HAs with avian and human receptor analogs revealed the basis for dual receptor binding. Mutagenesis studies reveal that the Q226L mutation shifts H3N8 HA’s receptor preference from avian to human, while the G228S substitution enhances binding to both receptor types. H3N8 exhibits distinct antigenic sites compared to H3N2, prompting concerns regarding vaccine efficacy. These findings suggest that the current H3N8 human isolates are yet to adapt for efficient human-to-human transmission and further continuous surveillance should be implemented.

Source: Journal of Virology, https://journals.asm.org/doi/full/10.1128/jvi.01065-24?af=R

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...