Skip to main content

#Bat #sarbecovirus WIV1-CoV bears an adaptive #mutation that alters spike dynamics and enhances #ACE2 binding

Abstract

SARS-like betacoronaviruses (sarbecoviruses) endemic in bats pose a significant zoonotic threat to humans. Genetic pathways associated with spillover of bat sarbecoviruses into humans are incompletely understood. We previously showed that the WT spike of the rhinolophid bat coronavirus SHC014-CoV has poor entry activity and uncovered two distinct genetic pathways outside the receptor-binding domain (RBD) that increased spike opening, ACE2 binding, and cell entry. Herein, we show that the widely studied bat sarbecovirus WIV1-CoV is likely a cell culture-adapted variant of Rs3367-CoV, which was sequenced from the same population of rhinolophid bats as SHC014-CoV. We demonstrate that the acquisition of a single amino-acid substitution in the ‘630-loop’ of the S1 subunit was the key spike adaptation event during the successful isolation of WIV1-CoV, and that it enhances spike opening, virus-receptor recognition, and cell entry in much the same manner as the substitutions we previously identified in SHC014-CoV using a pseudotype system. The conformational constraints on both the SHC014-CoV and Rs3367-CoV spikes could be alleviated by pre-cleaving them with trypsin, suggesting that the spike-opening substitutions arose to circumvent the lack of S1–S2 cleavage. We propose that the ‘locked-down’ nature of these spikes and their requirement for S1–S2 cleavage to engage ACE2 represent viral optimizations for a fecal-oral lifestyle and immune evasion in their natural hosts. These adaptations may be a broader property of bat sarbecoviruses than currently recognized. The acquisition of a polybasic furin cleavage site at the S1–S2 boundary is accepted as a key viral adaptation for SARS-CoV-2 emergence that overcame a host protease barrier to viral entry in the mammalian respiratory tract. Our results suggest alternative spillover scenarios in which spike-opening substitutions that promote virus-receptor binding and entry could precede, or even initially replace, substitutions that enhance spike cleavage in the zoonotic host.

Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2025.04.14.648681v1?rss=1

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

Stability of #influenza viruses in the #milk of #cows and #sheep

Abstract In late 2023, H5N1 high pathogenicity avian influenza (HPAIV) started circulating in dairy cattle in the USA . High viral titres were detected in milk from infected cows , raising concerns about onwards human infections . Although pasteurisation was shown to effectively inactivate influenza viruses in milk, unpasteurised milk still poses a risk of infection, both from occupational exposure in dairies and from the consumption of raw milk. We therefore assessed how long influenza viruses could remain infectious for in milk without heat inactivation. We examined the stability of a panel of influenza viruses in milk , including a contemporary H5N1 HPAIV and a variety of other influenza A and D viruses. We incubated viruses in cows' milk under laboratory conditions : at room temperature to simulate exposure in dairies and at 4°C to simulate exposure to refrigerated raw milk. Following an isolated report of H5N1 viral RNA being detected in milk from a sheep in the UK , we also c...

#Evidence of #Viremia in Dairy #Cows Naturally Infected with #Influenza A {#H5N1} Virus, #California, #USA

Abstract We confirmed influenza A virus (IAV) by PCR in serum from 18 cows on 3 affected dairy farms in California, USA . Our findings indicate the presence of viremia and might help explain IAV transmission dynamics and shedding patterns in cows. An understanding of those dynamics could enable development of IAV mitigation strategies. Source: US Centers for Disease Control and Prevention,  https://wwwnc.cdc.gov/eid/article/31/7/25-0134_article ____