Skip to main content

The intracellular #virus-host #interface of #henipaviruses

ABSTRACT

The Henipavirus genus comprises five viral species, of which the prototype members, Hendra virus (HeV) and Nipah virus (NiV), are reported to infect humans. In humans and other spill-over hosts, HeV/NiV can cause severe respiratory and/or encephalitic disease, with mortality rates exceeding 50%; currently, there are no approved human vaccines and only limited therapeutic options. As members of the family Paramyxoviridae, henipaviruses have six “core” structural proteins and typically three additional accessory proteins that are expressed from the P gene. Several of these proteins are multifunctional, with roles in forming intracellular interfaces with the host (in particular, M, P, V, W, and C proteins), to modulate processes including antiviral responses, supporting viral replication. Understanding the molecular basis of these interfaces and their functions is critical to delineate the mechanisms of pathogenesis and may inform new strategies to combat infection and disease. Recent research has significantly advanced the understanding of the functions and interactions of multifunctional intracellular henipavirus proteins, including revealing novel roles in subverting the nucleolar DNA damage response (DDR) and modulating the functions of 14-3-3 proteins. This review will discuss the intracellular virus-host interface, focusing on the M, P, V, W, and C proteins of HeV/NiV, with a focus on recently identified functions and interactions.

Source: Journal of Virology, https://journals.asm.org/doi/full/10.1128/jvi.00770-25?af=R

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

Stability of #influenza viruses in the #milk of #cows and #sheep

Abstract In late 2023, H5N1 high pathogenicity avian influenza (HPAIV) started circulating in dairy cattle in the USA . High viral titres were detected in milk from infected cows , raising concerns about onwards human infections . Although pasteurisation was shown to effectively inactivate influenza viruses in milk, unpasteurised milk still poses a risk of infection, both from occupational exposure in dairies and from the consumption of raw milk. We therefore assessed how long influenza viruses could remain infectious for in milk without heat inactivation. We examined the stability of a panel of influenza viruses in milk , including a contemporary H5N1 HPAIV and a variety of other influenza A and D viruses. We incubated viruses in cows' milk under laboratory conditions : at room temperature to simulate exposure in dairies and at 4°C to simulate exposure to refrigerated raw milk. Following an isolated report of H5N1 viral RNA being detected in milk from a sheep in the UK , we also c...

#Evidence of #Viremia in Dairy #Cows Naturally Infected with #Influenza A {#H5N1} Virus, #California, #USA

Abstract We confirmed influenza A virus (IAV) by PCR in serum from 18 cows on 3 affected dairy farms in California, USA . Our findings indicate the presence of viremia and might help explain IAV transmission dynamics and shedding patterns in cows. An understanding of those dynamics could enable development of IAV mitigation strategies. Source: US Centers for Disease Control and Prevention,  https://wwwnc.cdc.gov/eid/article/31/7/25-0134_article ____