Skip to main content

Are we cultivating the perfect #storm for a #human avian #influenza #pandemic?

Abstract

The emergence of highly pathogenic avian influenza (HPAI) A H5N1 virus in dairy cattle marks a troubling new chapter in the ongoing battle against zoonotic diseases. Since its initial detection in 1955, the H5N1 virus has primarily been associated with poultry, posing significant threats to both animal and human health. However, recent outbreaks in U.S. dairy herds across nine states have revealed an alarming expansion of the virus, with over 190 herds affected as of September 2024. This unprecedented spread in cattle has sparked intense concern among scientists and health officials, especially with reports indicating that up to 20% of dairy products may contain traces of the virus. The implications of the H5N1 virus establishing itself in cattle populations are profound. This potential endemic presence could transform dairy farms into reservoirs of the virus, facilitating its evolution and increasing the risk of human transmission. Mutations enhancing viral replication in mammals have already been identified, including the notorious PB2 E627K mutation linked to increased virulence. Moreover, the detection of the virus in the central nervous system of infected animals, including cats, underscores the broad tissue tropism and severe pathogenic potential of the H5N1 virus. Current containment efforts include stringent biosecurity measures and financial incentives for enhanced testing and personal protective equipment (PPE) for farmers. Yet, gaps in testing infrastructure and the resurgence of raw milk consumption pose significant challenges. The U.S. Department of Agriculture (USDA) and the Centers for Disease Control and Prevention (CDC) emphasize the critical need for comprehensive testing and pasteurization to mitigate the risk of human infection. As the scientific community races to adapt existing antiviral treatments and develop effective vaccines, the concept of a One Health approach becomes increasingly vital. This holistic strategy calls for coordinated actions across human, animal, and environmental health sectors to preemptively tackle emerging zoonotic threats. Strengthening surveillance, fostering international cooperation, and investing in research are essential steps to prevent the H5N1 virus from igniting the next global health crisis. The current avian influenza outbreak serves as a stark reminder of the delicate balance between human activities and viral evolution. Our collective ability to respond effectively and proactively will determine whether we can avert the perfect storm brewing on the horizon.

Source: Biological Research, https://biolres.biomedcentral.com/articles/10.1186/s40659-024-00570-6

_____

Comments

Popular posts from this blog

#USA, Two more #human cases of #H5N1 #birdflu reported in #California

Two cases of bird flu have been reported in San Joaquin County, California, local health officials said. According to a press release issued Friday and reported by the Sacramento Bee , health officials with San Joaquin County Public Health Services said both cases were farm workers who were exposed to infected animals . Both people are showing mild symptoms and are recovering, officials said, adding that there are 34 total confirmed cases across California. In a warning posted on Facebook, health officials said bird flu was “spreading in several farms such as poultry and cattle” and urged residents to take precautions to prevent the spread of the disease. Precautions include the use of protective equipment when handling poultry, dairy cattle or other animals that may be infected, and when handling raw and unpasteurized milk. (...) There are currently 60 confirmed cases of bird flu in the country . While most of the cases are in California , other states with confirmed cases include Col...

Viral #sepsis: #diagnosis, clinical #features, #pathogenesis, and #clinical considerations

Abstract Sepsis , characterized as life-threatening organ dysfunction resulting from dysregulated host responses to infection , remains a significant challenge in clinical practice . Despite advancements in understanding host-bacterial interactions , molecular responses, and therapeutic approaches, the mortality rate associated with sepsis has consistently ranged between 10 and 16%. This elevated mortality highlights critical gaps in our comprehension of sepsis etiology. Traditionally linked to bacterial and fungal pathogens, recent outbreaks of acute viral infections , including Middle East respiratory syndrome coronavirus ( MERS-CoV ), influenza virus, and severe acute respiratory syndrome coronavirus 2 ( SARS-CoV-2 ), among other regional epidemics, have underscored the role of viral pathogenesis in sepsis, particularly when critically ill patients exhibit classic symptoms indicative of sepsis. However, many cases of viral-induced sepsis are frequently underdiagnosed because standar...

Rapid #Surge of #Reassortant A(#H1N1) #Influenza Viruses in Danish #Swine and their #Zoonotic Potential

 Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2024.12.11.627926v1?rss=1  Abstract In 2018, a single detection of a novel reassortant swine influenza A virus (swIAV) was made in Denmark . The hemagglutinin (HA) of the virus was from the H1N1 pandemic 2009 (H1N1pdm09) lineage and the neuraminidase (NA) from the H1N1 Eurasian avian-like swine lineage (H1N1av). By 2022, the novel reassortant virus (H1pdm09N1av) constituted 27 % of swIAVs identified through the Danish passive swIAV surveillance program. Sequencing detected two H1pdm09N1av genotypes ; Genotype 1 contained an internal gene cassette of H1N1pdm09 origin , Genotype 2 differed by carrying an NS gene segment of H1N1av origin . The internal gene cassette of Genotype 2 became increasingly dominant, not only in the H1pdm09N1av population, but also in other Danish enzootic swIAV subtypes . Phylogenetic analysis of the HA genes from H1pdm09N1av viruses revealed a monophyletic source , a higher substitution rat...