Skip to main content

Modelling a potential #zoonotic #spillover event of #H5N1 #influenza

Abstract

Highly Pathogenic Avian Influenza (HPAI) is a prominent candidate for a future human pandemic arising from a zoonotic spillover event. Its best-known strain is H5N1, with South- or South-East Asia a likely location for an initial outbreak. Such an outbreak would be initiated through a primary event of bird-to-human infection, followed by sustained human-to-human transmission. Early interventions would require the extraction, integration and interpretation of epidemiological information from the limited and noisy case data available at outbreak onset. We studied the implications of a potential zoonotic spillover of H5N1 influenza into humans. Our simulations used BharatSim, an agent-based model framework designed primarily for the population of India, but which can be tuned easily for others. We considered a synthetic population representing farm-workers (primary contacts) in a farm with infected birds. These primary contacts transfer infections to secondary (household) contacts, from where the infection spreads further. We simulate outbreak scenarios in such a setting, accounting for the network structure of human contacts and the stochasticity of the infection process. We further simulated multiple interventions, including bird-culling, quarantines, and vaccinations. We show how limited, noisy data for primary and secondary infections can be used to estimate epidemiological transmission parameters, such as the basic reproductive ratio R0, in realistic settings. We describe the impact of early interventions (bird-culling, quarantines, and vaccination), taken together or separately, in slowing or terminating the outbreak. An individual-based model allows for the most granular description of the bird-human spillover and subsequent human-to-human transmission for the case of H5N1. Such models can be contextualised to individual communities across varied geographies, given representative contact networks. We show how such models allow for the systematic real-time exploration of policy measures that could constrain disease-spread, as well as guide a better understanding of disease epidemiology.

Source: MedRxIV, https://www.medrxiv.org/content/10.1101/2025.04.28.25326570v1

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...