Skip to main content

Modeling Effects of Routine #Screening for Accidental #Lab-Acquired #Infections on #Risk of Potential #Pandemic Pathogen #Escape from High-Biosafety Research Facilities

Abstract

Accidental lab–acquired infections (LAIs) risk releasing potential pandemic pathogens (PPPs) from BSL–3/4 facilities. We constructed a stochastic network infectious disease model to simulate how the probability of an outbreak of a pathogen resembling wild–type SARS–COV–2, following an initial LAI would be influenced by test–and–isolate interventions over a 100–day horizon. We varied test frequency (0–7 tests/week), peak sensitivity (50–100%), and isolation delay (0–3 days). For each of 192 parameter combinations, we conducted 1,000 simulations and used logistic regression to quantify how each parameter influenced the likelihood of an outbreak of 50 or more infections. Results indicated that even relatively infrequent routine testing significantly reduced the risk of outbreaks under diverse plausible scenarios, with greater reductions achieved at higher test frequencies. Once-weekly testing reduced outbreak risk by 52% under optimistic assumptions (80% sensitivity, 1–day delay) and by 29% under pessimistic assumptions (50% sensitivity, 2–day delay). Testing two and five times weekly yielded risk reductions of up to 62% and 71%, respectively, under optimistic assumptions, and 43% and 55%, respectively, under pessimistic assumptions. Logistic regression showed each additional weekly test decreased outbreak odds by 20%, each 10–point increase in test sensitivity reduced odds by 10%, and each additional isolation delay day increased odds by 15.5%. Interaction analyses revealed that longer isolation delays attenuated the protective effects of higher testing frequency and sensitivity. Routine lab worker screening with prompt isolation substantially mitigates PPP escape risks. High–frequency testing has the greatest impact, and policymakers should consider implementing regular screening protocols.

Source: MedRxIV, https://www.medrxiv.org/content/10.1101/2025.05.16.25327796v1

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...