Skip to main content

Trained ILCs confer adaptive #immunity-independent #protection against #influenza

ABSTRACT

Seasonal influenza causes 290,000–650,000 deaths annually, with vaccination efficacy ranging from 10 to 60%. The emergence of drug-resistant and highly pathogenic avian influenza viruses underscores the urgent need for novel protective strategies. Epidemiological observations have long suggested that certain vaccines, such as Bacillus Calmette-GuĂ©rin (BCG), can provide protection against diverse pathogens (S. Biering-Sørensen, P. Aaby, N. Lund, et al., Clin Infect Dis 65:1183–1190, 2017, https://doi.org/10.1093/cid/cix525; M.-L. Garly, C. L. Martins, C. BalĂ©, et al., Vaccine 21:2782–2790, 2003, https://doi.org/10.1016/s0264-410x(03)00181-6; C. A. G. Timmermann, S. Biering‐Sørensen, P. Aaby, et al., Trop Med Int Health 20:1733–1744, 2015, https://doi.org/10.1111/tmi.12614). While the cellular and molecular mechanisms underlying such protection remain incompletely understood, emerging research offers critical insights into innate immune system modulation (B. Cirovic, L. C. J. de Bree, L. Groh, et al., Cell Host Microbe 28:322–334, 2020, https://doi.org/10.1016/j.chom.2020.05.014; L. Kong, S. J. C. F. M. Moorlag, A. Lefkovith, et al., Cell Rep 37:110028, 2021, https://doi.org/10.1016/j.celrep.2021.110028; H. Mohammadi, N. Sharafkandi, M. Hemmatzadeh, et al., J Cell Physiol 233:4512–4529, 2018, https://doi.org/10.1002/jcp.26250; S. J. C. F. M. Moorlag, Y. A. Rodriguez-Rosales, J. Gillard, et al., Cell Rep 33:108387, 2021, https://doi.org/10.1016/j.celrep.2020.108387). We investigated whether a trained innate immune system with non-replicating adenoviruses could provide protection against diverse influenza virus strains. We demonstrated that replication-defective human adenoviruses can effectively train the innate immune system, conferring protective immunity in mice against multiple influenza virus strains, including H1N1, H3N2, H5N2, H7N9, and H9N2. In addition, bovine and chimpanzee adenoviruses can also activate human innate lymphoid cells (ILCs) and confer protection against challenge with influenza H3N2 virus in mice. Remarkably, this protection occurs in the complete absence of influenza-specific adaptive immune responses (influenza virus-specific hemagglutination-inhibiting antibodies, neutralizing antibodies, and influenza nucleoprotein-specific CD8 T cells). Key protective mechanisms include increased activation of ILC1, ILC2, and ILC3 populations, enhanced expression of interferon-stimulated genes (ISGs), upregulation of antiviral signaling pathways, and metabolic reprogramming of ILC subsets. Adoptive transfer experiments demonstrated that trained ILCs were sufficient to protect against influenza H1N1 infection in ILC-deficient mice. This research establishes a novel strategy for enhancing innate antiviral immunity, offering broad-spectrum protection against diverse influenza strains, a promising approach for not only pandemic preparedness but also against emerging infectious diseases. Training innate lymphoid cells through non-replicating adenoviral vectors represents a promising approach to enhancing broad-spectrum antiviral immunity, complementing traditional vaccination strategies.


IMPORTANCE

The findings represent a potential game-changer for fighting influenza, which kills hundreds of thousands of people worldwide each year despite our best vaccination efforts. Current flu vaccines often provide limited protection because they must be reformulated annually to match circulating strains, and their effectiveness varies dramatically from year to year. The scientists discovered something remarkable: common adenoviruses (which typically cause mild cold-like symptoms) can essentially “train” our immune system’s first line of defense to recognize and fight off multiple types of flu viruses simultaneously. This protection works through a completely different mechanism than traditional vaccines—it does not rely on creating specific antibodies against flu proteins. Instead, the treatment activates special immune cells called innate lymphoid cells (ILCs), which act like the body’s rapid response team. These trained cells provide broad protection against various flu strains, including dangerous bird flu variants that could cause future pandemics. The significance lies in potentially creating a universal flu protection strategy that could work against unknown future flu strains, offering hope for better pandemic preparedness and reducing seasonal flu’s devastating global impact.

Source: Journal of Virology, https://journals.asm.org/doi/10.1128/jvi.00532-25

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...