Skip to main content

#Ebola virus’ hidden #target: virus #transmission to and infection of #skin

 


ABSTRACT

Ebola virus (EBOV), the causative agent of Ebola virus disease, remains one of the World Health Organization’s top 10 threats to global health. Infectious EBOV virions can be found on the surface of skin late in infection and may be transmitted to others through skin-to-skin contact. We investigate in vivo EBOV tropism and the kinetics of virus movement to and from the skin. Increasing viral loads were detected over time in the skin of EBOV-infected non-human primates and mice, with antigen detected in dermal stromal and immune cells. Epidermal cells within and surrounding hair follicles also harbored viral antigen, suggesting a novel mechanism of virus egress to the epidermal surface. During late infection, proinflammatory responses were elevated in infected visceral organs but minimal in the skin despite significant viral loads. We observed similar viral trafficking and cell tropism in the skin of mice intraperitoneally infected with a low containment EBOV model virus, rVSV/EBOV GP, allowing more detailed mechanistic studies. Sites of virus infection in the skin were patchy, with intense focal areas of infection surrounded by uninfected areas. To investigate virus entry into the body through skin, rVSV/EBOV GP was applied to the surface of gently abraded skin to remove the stratum corneum; epidermal keratinocytes were robustly infected with subsequent systemic viral dissemination observed in some mice. Optimal levels of infection within the skin required expression of the phosphatidylserine receptor, AXL. Collectively, our data demonstrate that skin serves as an important organ targeted by EBOV, facilitating virus entry into and egress from the body.

Source: Journal of Virology, https://journals.asm.org/doi/full/10.1128/jvi.01300-25?af=R

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...