Skip to main content

#Influenza at the #human - #animal #interface - #Summary and #risk assessment, from 2 July to 25 August 2025 (#WHO, September 17 '25)

 


New human cases{1,2}: 

-- From 2 July to 25 August 2025, based on reporting date, the detection of influenza A(H5N1) in five humans and influenza A(H9N2) in two humans were reported officially.  


Circulation of influenza viruses with zoonotic potential in animals

- High pathogenicity avian influenza (HPAI) events in poultry and non-poultry animal species continue to be reported to the World Organisation for Animal Health (WOAH).{3} 

- The Food and Agriculture Organization of the United Nations (FAO) also provides a global update on avian influenza viruses with pandemic potential.{4} 


Risk assessment{5}: 

- Sustained human to human transmission has not been reported from these events. 

- Based on information available at the time of this risk assessment update, the overall public health risk from currently known influenza A viruses detected at the human-animal interface has not changed and remains low

- The occurrence of sustained human-to-human transmission of these viruses is currently considered unlikely

- Although human infections with viruses of animal origin are infrequent, they are not unexpected at the human-animal interface.  


IHR compliance

- All human infections caused by a new influenza subtype are required to be reported under the International Health Regulations (IHR, 2005).{6} 

- This includes any influenza A virus that has demonstrated the capacity to infect a human and its haemagglutinin (HA) gene (or protein) is not a mutated form of those, i.e. A(H1) or A(H3), circulating widely in the human population. 

- Information from these notifications is critical to inform risk assessments for influenza at the human-animal interface.  


Avian influenza viruses in humans 

- Current situation:  Since the last risk assessment of 1 July 2025, four laboratory-confirmed human cases of A(H5N1) infection were detected in Cambodia and notified to WHO. 

- One human case of influenza A(H5N1) detected in a person in India and included in the previous risk assessment of 1 July 2025 was reported to WHO. 


A(H5N1), Cambodia 



All cases above had exposure to sick or dead backyard poultry

Rapid response teams from the public health and animal health sectors have been deployed to investigate and respond to the outbreak.  

Fifteen human infections with A(H5N1) viruses have been confirmed in Cambodia in 2025 and seven of these have been fatal

All these cases in 2025 had exposure to domestic birds or their environments. 

In some cases, the domestic birds were reported to be sick or dead. 

Influenza A(H5N1) viruses continue to be detected in domestic birds in Cambodia in 2025, including in areas where human cases have been detected.{7} 

Where the information is available, the genetic sequence data from the viruses from the human cases closely matches that from recent local animal viruses and are identified as clade 2.3.2.1e viruses

From the information available thus far on these recent human cases, there is no indication of human-to-human transmission of the A(H5N1) viruses.  

According to reports received by WOAH, various influenza A(H5) subtypes continue to be detected in wild and domestic birds in Africa, the Americas, Asia and Europe. 

Infections in non-human mammals are also reported, including in marine and land mammals.{8} 

A list of bird and mammalian species affected by HPAI A(H5) viruses is maintained by FAO.{9}


Risk Assessment for avian influenza A(H5N1) viruses:  

1. What is the current global public health risk of additional human cases of infection with avian influenza A(H5N1) viruses?  

-- Most human cases so far have been infections in people exposed to A(H5) viruses, for example, through contact with infected poultry or contaminated environments, including live poultry markets, and occasionally infected mammals and contaminated environments. 

-- As long as the viruses continue to be detected in animals and related environments humans are exposed to, further human cases associated with such exposures are expected but unusual. 

-- The impact for public health if additional cases are detected is minimal

-- The current overall global public health risk of additional human cases is low

2. What is the likelihood of sustained human-to-human transmission of avian influenza A(H5N1) viruses related to the events above?  

-- No sustained human-to-human transmission has been identified associated with the recent reported human infections with avian influenza A(H5N1) viruses. 

-- There has been no reported human-tohuman transmission of A(H5N1) viruses since 2007, although there may be gaps in investigations. 

-- In 2007 and the years prior, small clusters of A(H5) virus infections in humans were reported, including some involving health care workers, where limited human-to-human transmission could not be excluded; however, sustained human-to-human transmission was not reported.  

-- Current evidence suggests that influenza A(H5N1) viruses related to these events did not acquire the ability to efficiently transmit between people, therefore sustained human-to-human transmission is thus currently considered unlikely.  

3. What is the likelihood of international spread of avian influenza A(H5N1) viruses by travellers?  

-- Should infected individuals from affected areas travel internationally, their infection may be detected in another country during travel or after arrival. 

-- If this were to occur, further communitylevel spread is considered unlikely as current evidence suggests these viruses have not acquired the ability to transmit easily among humans.  


A(H9N2), China

Since the last risk assessment of 1 July 2025, two human cases of infection with A(H9N2) influenza viruses were notified to WHO from China on 8 July 2025. 

The cases in children were detected in Guangdong and Hubei provinces, with onset of symptoms in May and June, respectively. 

Both cases had mild illness, were not hospitalized and recovered. 

The cases had a known history of exposure to backyard poultry or a live poultry market prior to the onset of symptoms. 

No further cases were detected among contacts of these cases.   


Risk Assessment for avian influenza A(H9N2):

1. What is the global public health risk of additional human cases of infection with avian influenza A(H9N2) viruses?

-- Most human cases follow exposure to the A(H9N2) virus through contact with infected poultry or contaminated environments. 

-- Most human infections of A(H9N2) to date have resulted in mild clinical illness. 

-- Since the virus is endemic in poultry in multiple countries in Africa and Asia{11}, further human cases associated with exposure to infected poultry are expected but remain unusual. 

-- The impact to public health if additional cases are detected is minimal

-- The overall global public health risk of additional human cases is low.  

2. What is the likelihood of sustained human-to-human transmission of avian influenza A(H9N2) viruses related to this event?

-- At the present time, no sustained human-to-human transmission has been identified associated with the recent reported human infections with A(H9N2) viruses. 

-- Current evidence suggests that influenza A(H9N2) viruses from these cases did not acquire the ability of sustained transmission among humans, therefore sustained human-to-human transmission is thus currently considered unlikely.   

3. What is the likelihood of international spread of avian influenza A(H9N2) virus by travellers?

-- Should infected individuals from affected areas travel internationally, their infection may be detected in another country during travel or after arrival. 

-- If this were to occur, further community level spread is considered unlikely as current evidence suggests the A(H9N2) virus subtype has not acquired the ability to transmit easily among humans.   


Overall risk management recommendations: Surveillance and investigations 

Due to the constantly evolving nature of influenza viruses, WHO continues to stress the importance of global strategic surveillance in animals and humans to detect virologic, epidemiologic and clinical changes associated with circulating influenza viruses that may affect human (or animal) health. Continued vigilance is needed within affected and neighbouring areas to detect infections in animals and humans. Close collaboration with the animal health and environment sectors is essential to understand the extent of the risk of human exposure and to prevent and control the spread of animal influenza. WHO has published guidance on surveillance for human infections with avian influenza A(H5) viruses. 

As the extent of influenza virus circulation in animals is not clear, epidemiologic and virologic surveillance and the follow-up of suspected human cases should continue systematically. Guidance on investigation of non-seasonal influenza and other emerging acute respiratory diseases has been published on the WHO website. 

Countries should increase avian influenza surveillance in domestic and wild birds, enhance surveillance for early detection in cattle populations in countries where HPAI is known to be circulating, include HPAI as a differential diagnosis in non-avian species, including cattle and other livestock populations, with high risk of exposure to HPAI viruses; monitor and investigate cases in non-avian species, including livestock, report cases of HPAI in all animal species, including unusual hosts, to WOAH and other international organizations, share genetic sequences of avian influenza viruses in publicly available databases, implement preventive and early response measures to break the HPAI transmission cycle among animals through movement restrictions of infected livestock holdings and strict biosecurity measures in all holdings, employ good production and hygiene practices when handing animal products, and protect persons in contact with suspected/infected animals.{10} More guidance can be found from WOAH and FAO. 

When there has been human exposure to a known outbreak of an influenza A virus in domestic poultry, wild birds or other animals – or when there has been an identified human case of infection with such a virus – enhanced surveillance in potentially exposed human populations becomes necessary. Enhanced surveillance should consider the health care seeking behaviour of the population, and could include a range of active and passive health care and/or communitybased approaches, including: enhanced surveillance in local influenza-like illness (ILI)/SARI systems, active screening in hospitals and of groups that may be at higher occupational risk of exposure, and inclusion of other sources such as traditional healers, private practitioners and private diagnostic laboratories. 

Vigilance for the emergence of novel influenza viruses with pandemic potential should be maintained at all times including during a non-influenza emergency. In the context of the cocirculation of SARS-CoV-2 and influenza viruses, WHO has updated and published practical guidance for integrated surveillance. 


Notifying WHO 

All human infections caused by a new subtype of influenza virus are notifiable under the International Health Regulations (IHR, 2005).{11} State Parties to the IHR (2005) are required to immediately notify WHO of any laboratory-confirmed512 case of a recent human infection caused by an influenza A virus with the potential to cause a pandemic{6,13}. Evidence of illness is not required for this report. 

WHO published the case definition for human infections with avian influenza A(H5) virus requiring notification under IHR (2005): https://www.who.int/teams/global-influenzaprogramme/avian-influenza/case-definitions


Virus sharing and risk assessment 

It is critical that these influenza viruses from animals or from humans are fully characterized in appropriate animal or human health influenza reference laboratories. Under WHO’s Pandemic Influenza Preparedness (PIP) Framework, Member States are expected to share influenza viruses with pandemic potential on a timely basis{14} with a WHO Collaborating Centre for influenza of GISRS. The viruses are used by the public health laboratories to assess the risk of pandemic influenza and to develop candidate vaccine viruses.  

The Tool for Influenza Pandemic Risk Assessment (TIPRA) provides an in-depth assessment of risk associated with some zoonotic influenza viruses – notably the likelihood of the virus gaining human-to-human transmissibility, and the impact should the virus gain such transmissibility. TIPRA maps relative risk amongst viruses assessed using multiple elements. The results of TIPRA complement those of the risk assessment provided here, and those of prior TIPRA analyses will be published at http://www.who.int/teams/global-influenza-programme/avian-influenza/toolfor-influenza-pandemic-risk-assessment-(tipra).  


Risk reduction 

Given the observed extent and frequency of avian influenza in poultry, wild birds and some wild and domestic mammals, the public should avoid contact with animals that are sick or dead from unknown causes, including wild animals, and should report dead birds and mammals or request their removal by contacting local wildlife or veterinary authorities.  

Eggs, poultry meat and other poultry food products should be properly cooked and properly handled during food preparation. Due to the potential health risks to consumers, raw milk should be avoided. WHO advises consuming pasteurized milk. If pasteurized milk isn’t available, heating raw milk until it boils makes it safer for consumption. 

WHO has published practical interim guidance to reduce the risk of infection in people exposed to avian influenza viruses. 


Trade and travellers 

WHO advises that travellers to countries with known outbreaks of animal influenza should avoid farms, contact with animals in live animal markets, entering areas where animals may be slaughtered, or contact with any surfaces that appear to be contaminated with animal excreta. Travelers should also wash their hands often with soap and water. All individuals should follow good food safety and hygiene practices.  

WHO does not advise special traveller screening at points of entry or restrictions with regards to the current situation of influenza viruses at the human-animal interface. For recommendations on safe trade in animals and related products from countries affected by these influenza viruses, refer to WOAH guidance.  


Links:  

-- WHO Human-Animal Interface web page https://www.who.int/teams/global-influenza-programme/avian-influenza 

-- WHO Influenza (Avian and other zoonotic) fact sheet https://www.who.int/news-room/fact-sheets/detail/influenza-(avian-and-other-zoonotic) 

-- WHO Protocol to investigate non-seasonal influenza and other emerging acute respiratory diseases https://www.who.int/publications/i/item/WHO-WHE-IHM-GIP-2018.2 

-- WHO Public health resource pack for countries experiencing outbreaks of influenza in animals:  https://www.who.int/publications/i/item/9789240076884 

-- Cumulative Number of Confirmed Human Cases of Avian Influenza A(H5N1) Reported to WHO  https://www.who.int/teams/global-influenza-programme/avian-influenza/avian-a-h5n1-virus 

-- Avian Influenza A(H7N9) Information https://www.who.int/teams/global-influenza-programme/avian-influenza/avian-influenza-a-(h7n9)virus 

-- World Organisation of Animal Health (WOAH) web page: Avian Influenza  https://www.woah.org/en/home/ 

-- Food and Agriculture Organization of the United Nations (FAO) webpage: Avian Influenza https://www.fao.org/animal-health/avian-flu-qa/en/ 

-- OFFLU http://www.offlu.org/ 

____

{1} This summary and assessment covers information confirmed during this period and may include information received outside of this period. 

{2} For epidemiological and virological features of human infections with animal influenza viruses not reported in this assessment, see the reports on human cases of influenza at the human-animal interface published in the Weekly Epidemiological Record here.  

{3} World Organisation for Animal Health (WOAH). Avian influenza. Global situation. Available at: https://www.woah.org/en/disease/avian-influenza/#ui-id-2

{4} Food and Agriculture Organization of the United Nations (FAO). Global Avian Influenza Viruses with Zoonotic Potential situation update. Available at: https://www.fao.org/animal-health/situation-updates/global-aiv-withzoonotic-potential

{5} World Health Organization (2012). Rapid risk assessment of acute public health events. World Health Organization. Available at: https://iris.who.int/handle/10665/70810

{6} World Health Organization. Case definitions for the 4 diseases requiring notification to WHO in all circumstances under the International Health Regulations (2005). Case definitions for the four diseases requiring notification in all circumstances under the International Health Regulations (2005).  

{7} https://wahis.woah.org/#/in-event/5754/dashboard 

{8} World Organisation for Animal Health (WOAH). Avian influenza. Global situation. Available at: https://www.woah.org/en/disease/avian-influenza/#ui-id-2

{9} Food and Agriculture Organization of the United Nations. Global Avian Influenza Viruses with Zoonotic Potential situation update. Available at: https://www.fao.org/animal-health/situation-updates/global-aiv-withzoonotic-potential/bird-species-affected-by-h5nx-hpai/en

{10} World Organisation for Animal Health. Statement on High Pathogenicity Avian Influenza in Cattle, 6 December 2024. Available at: https://www.woah.org/en/high-pathogenicity-avian-influenza-hpai-in-cattle/

{11} World Health Organization. Case definitions for the four diseases requiring notification in all circumstances under the International Health Regulations (2005).    

{12} World Health Organization. Manual for the laboratory diagnosis and virological surveillance of influenza (2011). Available at: https://apps.who.int/iris/handle/10665/44518 

{13} World Health Organization. Pandemic influenza preparedness framework for the sharing of influenza viruses and access to vaccines and other benefits, 2nd edition. Available at: https://iris.who.int/handle/10665/341850 

{14} World Health Organization. Operational guidance on sharing influenza viruses with human pandemic potential (IVPP) under the Pandemic Influenza Preparedness (PIP) Framework (2017). Available at: https://apps.who.int/iris/handle/10665/25940 

Source: World Health Organization, https://www.who.int/publications/m/item/influenza-at-the-human-animal-interface-summary-and-assessment--25-august-2025

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...