Skip to main content

Structural basis for a potent #human neutralizing #antibody targeting a conserved epitope on the #H7 #hemagglutinin head

 


Significance

The high-resolution cryo-EM structure indicates that the human antibody 6Y13 binds strongly to a conserved pan-H7 epitope on the hemagglutinin head, distinct from the receptor-binding site and lateral patch. However, 6Y13 can broadly neutralize H7 viruses, fully protect H7N9-infected mice, and potently block receptor binding through mechanisms, independent of Fc-mediated steric hindrance.


Abstract

Zoonotic H7N9 avian influenza virus infection remains a global concern because of its pandemic potential. Therefore, developing effective antibodies and vaccines against H7N9 is vital for preventing and controlling major outbreaks. Here, we isolated a human VH3-30 gene-encoded antibody, designated 6Y13, from a survivor of H7N9 infection. This antibody recognized the hemagglutinins (HAs) of the representative H7 subtype zoonotic viruses spanning two decades of antigenic evolution and potently neutralized epidemic H7N9 viruses in vitro. Moreover, 6Y13 conferred complete protection in mice against lethal H7N9 challenge in both prophylactic and therapeutic experiments. Structural analysis by cryoelectron microscopy indicated that 6Y13 binds to a unique conserved site on the HA head, distinct from the receptor-binding site and lateral patch. Nevertheless, 6Y13 efficiently blocked viral receptor binding without interfering with HA receptor binding, independent of Fc-mediated steric hindrance. Our findings provide a promising therapeutic candidate against pan-H7 subtype viruses and are beneficial for the design of H7 subtype influenza vaccine immunogens.

Source: Proceedings of the National Academy of Sciences of the United States of America, https://www.pnas.org/doi/10.1073/pnas.2503008122

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...