Skip to main content

A clade 2.3.4.4b #H5N1 virus #vaccine that elicits cross-protective #antibodies against conserved domains of H5 and N1 glycoproteins



Abstract

The continuous evolution and widespread dissemination of highly pathogenic avian influenza (HPAI) H5N1 viruses, particularly clade 2.3.4.4b, pose critical challenges to global pandemic preparedness. In this study, we assessed a low-dose inactivated split virus vaccine derived from clade 2.3.4.4b H5N1, formulated with an Alum/CpG adjuvant, using a preclinical mouse model. This vaccine induced potent humoral and cellular immune responses, generating high titers of cross-reactive antibodies targeting both hemagglutinin (HA) and neuraminidase (NA) glycoproteins across homologous and heterologous H5 clades. The Alum/CpG adjuvant enabled significant antigen dose-sparing while promoting a balanced Th1/Th2 immune profile. Functional analyses demonstrated strong virus neutralization, neuraminidase inhibition, and potent antibody-dependent cellular cytotoxicity activity. Additionally, the vaccine elicited robust antigen-specific CD4+ and CD8+ T cell responses and effectively controlled viral replication in the lungs, accompanied by reduced lung inflammation. Importantly, vaccinated mice were fully protected against lethal challenges with both the homologous clade 2.3.4.4b and heterologous clade 1 H5N1 viruses, despite low hemagglutination inhibition titers. Electron microscopy polyclonal epitope mapping revealed serum antibodies targeting multiple epitopes on homologous HA and NA, with some cross-reacting to conserved epitopes on heterologous proteins, underscoring broad immune recognition. Collectively, these results highlight the potential of this vaccine candidate to provide broad, multifunctional, and durable immunity against both current and emerging H5N1 threats, supporting its further development for pandemic preparedness.


Competing Interest Statement

The Icahn School of Medicine at Mount Sinai has filed patent applications regarding influenza virus vaccines on which E.P.M. and F.K. are listed as inventors. F.K. has consulted for Merck, GSK, Gritstone, Sanofi, Curevac, Seqirus and Pfizer and is currently consulting for 3rd Rock Ventures and Avimex. The laboratory of F.K. is also collaborating with Dynavax on influenza vaccine development and with VIR on influenza virus therapeutics. A.B.W. has received royalty payments for the licensure of a prefusion coronavirus spike stabilization technology for which he is a co-inventor. A.B.W. and J.H. are currently consulting for Third Rock Ventures and Merida Biosciences. The laboratory of A.B.W. received unrelated sponsored research agreements from Third Rock Ventures during the conduct of the study. The authors declare that they have no other competing interests.


Funder Information Declared

NIAID, 75N93019C00051

Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2025.08.14.670375v1

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...