Skip to main content

#COVID19-associated #neuroinflammation and #astrocyte death in the #brain linked to ORF3a-induced activation of Sur1-mediated ion channels

 


ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has disproportionately affected individuals with pre-existing medical conditions, such as neurocognitive disorders. Premorbid neurocognitive conditions compounded by COVID-19 can escalate into COVID-associated neurological complications, leading to severe illness or even death. As COVID-19 continues to persist and vaccines lose efficacy against emerging variants, individuals with neurocognitive disorders often experience prolonged symptoms that are further exacerbated by repeated breakthrough infections of highly diversified viral variants due to emergence of new viral mutations. Despite the significance of neurocognitive disorders as risk factors for COVID-19-related mortality and long COVID, the underlying causes remain largely unknown. In this study, we report a link between ORF3a expression and COVID-associated neuroinflammation and neurocytotoxicity in postmortem brain tissues from COVID-19 patients. These findings were further verified through neural cell-based in vitro and in vivo animal studies introducing ORF3a either alone or in the context of viral infection. As a membrane-associated protein, ORF3a induces upregulation of Sur1-regulated ion channels, resulting in intracellular Ca2+ influx, apoptosis, and necrosis through both NF-kB-dependent and independent proinflammatory responses in astrocytes. These findings reveal a novel clinical and mechanistic link between ORF3a and Sur1-regulated ion channels, which are highly responsive to neuroinflammatory conditions causing neurodegeneration. Additionally, we have identified a Food and Drug Administration-approved drug, glibenclamide, and a natural antiviral compound glycyrrhizin that effectively mitigates the neuropathological effects of ORF3a, underscoring the therapeutic potential and clinical significance of these findings.

Source: mBio, https://journals.asm.org/doi/full/10.1128/mbio.02012-25?af=R

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...