The #pathogenicity and multi-organ proteomic profiles of #Mpox virus #infection in SIVmac239-infected rhesus #macaques
Abstract
Mpox poses a heightened risk of severe disease and mortality among individuals with HIV, yet the molecular mechanisms and immunopathology underlying multi-organ damage caused by the mpox virus (MPXV), particularly in the context of HIV co-infection, remain poorly understood. Here, we observe increased MPXV replication, more extensive skin lesions, and impaired humoral and cellular immune responses in SIV-MPXV co-infected rhesus macaques compared to those infected with MPXV alone. Multi-organ proteomic and phosphoproteomic analyses reveals upregulation of proteins involved in immune and inflammatory pathways in skin lesions and across multiple organs, especially in immune-related tissues. Abnormal activation of DNA replication and cell cycle signaling pathways, which may contribute to enhanced viral replication, is evident in both MPXV and SIV-MPXV co-infected groups. CDK4/6 may present a potential therapeutic target to suppress MPXV replication. These comprehensive proteomic datasets offer valuable insights into the pathogenesis of MPXV in the context of SIV co-infection and support ongoing efforts to mitigate the impact of mpox.
Source: Nature Communications, https://www.nature.com/articles/s41467-025-62919-z
____
Comments
Post a Comment