Skip to main content

Increased #pathogenicity and #transmission of #SARS-CoV-2 #Omicron #XBB.1.9 subvariants, including HK.3 and EG.5.1, relative to BA.2

 


ABSTRACT

With the SARS-CoV-2 Omicron XBB.1.9 subvariants circulating worldwide, two XBB.1.9 variants, EG.5.1 and HK.3, spread rapidly and became dominant in mid-2023. However, the spike features, pathogenicity, and transmissibility of HK.3 are largely unknown. Here, we performed multiscale investigations to reveal the virological features of XBB.1.9 subvariants, including the newly emerging HK.3. HK.3 revealed high replication efficiency and enhanced TMPRSS2 utilization in vitro. The HK.3 spike exhibited enhanced processing, although its infectivity, fusogenicity, and human ACE2 (hACE2) binding affinity were comparable to those of the EG.5 and XBB.1 spikes. All XBB.1.9.1, EG.5.1, and HK.3 strains demonstrated efficient transmission in hamsters, although XBB.1.9.1 exhibited stronger fitness in the upper airways. XBB.1.9.1, EG.5.1, and HK.3 exhibited greater pathogenicity than BA.2 in H11-K18-hACE2 hamsters. Our studies provide insights into the newly emerging pathogens EG.5.1 and HK.3.


IMPORTANCE

SARS-CoV-2 Omicron continues to circulate and evolve into novel lineages with indistinguishable pathogenicity and transmission. Ancestral Omicron lineages, such as BA.1 and BA.2, revealed attenuated pathogenicity and transmission, at least in animal models. However, on a previously reported Omicron-sensitive H11-K18-hACE2 hamster model, the infections of XBB.1.9 lineages, EG.5, and HK.3 led to faster lethality and more severe terminal bronchioles symptom than BA.2. They also revealed efficient transmission in a hamster model, which corresponds well with their prevalence in multiple countries. Our study highlights the importance of surveillance and virological studies on epidemic Omicron subvariants.

Source: Journal of Virology, https://journals.asm.org/doi/full/10.1128/jvi.01342-25?af=R

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...