Characterization of #H5N1 high pathogenicity avian #influenza virus belonging to clade 2.3.4.4b isolated from Ezo red #fox in #Japan in a mouse model
ABSTRACT
H5N1 high pathogenicity avian influenza virus (HPAIV) has spread in wild birds and poultry worldwide. H5N1 HPAIV belonging to the currently predominant clade 2.3.4.4b has infected not only birds but also mammals (wild and domestic animals), with several human infections also being reported, raising concerns for public health. In 2022, a clade 2.3.4.4b H5N1 HPAIV strain, A/Ezo red fox/Hokkaido/1/2022 (H5N1; Fox/Hok/1/22), was isolated from an Ezo red fox (Vulpes vulpes schrencki) in Hokkaido, Japan; this was the first reported case of clade 2.3.4.4b H5N1 HPAIV isolation from a mammalian species in Japan. Several amino acid substitutions in the PB2 protein play an important role in the adaptation of avian influenza viruses to mammals, but Fox/Hok/1/22 PB2 does not have any of these well-known mammalian-adapting PB2 substitutions. Here, we investigated the biological properties of Fox/Hok/1/22 in a mouse model and found that this virus was highly virulent in mice and replicated well in multiple organs, including the lungs and brain. We then examined whether viruses isolated from these organs acquired known mammalian-adapting PB2 amino acid substitutions, such as PB2 E627K. Deep sequencing analysis of viral RNA from mouse brain and lungs revealed that virus with PB2-627E was predominant in three of four mice, whereas the PB2-627K substitution was predominant in one mouse. These results indicate that Fox/Hok/1/22 is highly virulent in mice despite lacking known PB2 substitutions involved in mammalian adaptation.
IMPORTANCE
The H5N1 avian influenza virus has caused severe disease in birds worldwide and is now spreading to mammals, including humans. In 2022, this virus was detected for the first time in an Ezo red fox in Japan. To understand its potential impact on mammals, we studied this virus in mice and found that it caused severe illness, spreading to multiple organs, including the lungs and brain. Surprisingly, despite lacking genetic mutations typically associated with mammalian adaptation, the virus was highly virulent in mice. This finding suggests that the H5N1 virus may pose a greater threat to mammals, including humans, than previously thought. Given their continued spread among wild and domestic animals, our findings underscore the urgent need to monitor how recent H5N1 viruses behave in mammals.
Source:
Link: https://journals.asm.org/doi/10.1128/spectrum.01097-25
____

Comments
Post a Comment