Skip to main content

#Surveillance of Highly Pathogenic Avian #Influenza Virus in Wild #Canids from #Pennsylvania, #USA

Abstract

The avian influenza virus is a global pathogen with significant health and economic implications. While primarily a pathogen of wild and domestic birds, recent outbreaks of the H5N1 highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.4b have caused mortality in a wide variety of mammals, including members of the Canidae family, on multiple continents. Despite sporadic mortality events globally, the epidemiology and pathobiology of H5N1 HPAIV in wild canids remains poorly defined. During 2022–2024, 41 wild canid carcasses (diagnostic cases), including 23 red foxes and 18 gray foxes, were tested for the influenza A virus (IAV) via PCR, with five red fox kits testing positive (12%). Infected animals had variably severe encephalitis, pneumonia, and occasionally myocarditis associated with strong immunolabeling for IAV. Serum from 269 wild canids in Pennsylvania was tested for antibodies to IAV, including 133 samples collected prior to 2021 (pre-H5N1 HPAIV 2.3.4.4b introduction) and 136 collected after 2022 (post-H5N1 HPAIV 2.3.4.4b introduction). All samples collected prior to 2021 were seronegative for IAV. Two coyotes from 2024 were seropositive for IAV but were negative for antibodies to the H5 and N1 subtypes. Collectively, these data suggest that while sporadic H5N1 HPAIV infection and mortality can occur in wild canids, particularly juvenile red foxes, infection was limited in these outwardly healthy and opportunistically sampled animals. Future studies should utilize a risk-based approach to target sampling of wild canids at increased risk for H5N1 HPAIV infection, such as those around waterfowl habitats or spatially around wild bird or domestic animal outbreaks.

Source: Animals, https://www.mdpi.com/2076-2615/14/24/3700

_____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...