Skip to main content

Emerging #zoonotic potential of #H4N1 avian #influenza virus: enhanced #human #receptor binding and #replication via novel mutations

Abstract

Background

Avian influenza virus (AIV), a zoonotic pathogen found worldwide, includes multiple subtypes, one of which is the H4 subtype frequently detected in wild birds and poultry. Despite its prevalence, research on H4 subtype AIV has been scarce, with a focus predominantly on the H4N2 and H4N6 subtypes. The zoonotic potential of H4N1 has not been investigated to date.

Methods

In this study, we used gene sequencing in conjunction with bioinformatics methodologies to analyze wild-type H4N1 AIV strain and mutant strains emerging from serial passaging in cell culture. Furthermore, we assessed the zoonotic potential of H4N1 and the alterations caused by mutations via a series of phenotype assays, including evaluation of receptor binding affinity, immunofluorescence assays, analyses of growth kinetics across different animal cell cultures, and in vivo pathogenicity studies.

Results

Our research reveals that H4N1 AIV can bind to human receptors and exhibits an affinity for human lung and tracheal tissues. In vitro experiments demonstrate that H4N1 replicates efficiently in human cell lines. Furthermore, animal studies demonstrate that H4N1 can induce pneumonia in mice without the need for prior adaptation to the host. Notably, during passage in cell culture, H4N1 rapidly acquired two previously unreported mutations. These mutations significantly enhanced the virus’s ability to attach to human receptors and its capacity for replication.

Conclusions

In summary, our study provides preliminary experimental evidence for the emerging zoonotic potential of H4N1 AIV. These findings expand our knowledge of the H4 subtype AIV and reinforce the critical need for continued surveillance of AIV to prevent and prepare for potential outbreaks affecting human health.

Source: Virology Journal, https://virologyj.biomedcentral.com/articles/10.1186/s12985-025-02736-4

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

Stability of #influenza viruses in the #milk of #cows and #sheep

Abstract In late 2023, H5N1 high pathogenicity avian influenza (HPAIV) started circulating in dairy cattle in the USA . High viral titres were detected in milk from infected cows , raising concerns about onwards human infections . Although pasteurisation was shown to effectively inactivate influenza viruses in milk, unpasteurised milk still poses a risk of infection, both from occupational exposure in dairies and from the consumption of raw milk. We therefore assessed how long influenza viruses could remain infectious for in milk without heat inactivation. We examined the stability of a panel of influenza viruses in milk , including a contemporary H5N1 HPAIV and a variety of other influenza A and D viruses. We incubated viruses in cows' milk under laboratory conditions : at room temperature to simulate exposure in dairies and at 4°C to simulate exposure to refrigerated raw milk. Following an isolated report of H5N1 viral RNA being detected in milk from a sheep in the UK , we also c...

#Evidence of #Viremia in Dairy #Cows Naturally Infected with #Influenza A {#H5N1} Virus, #California, #USA

Abstract We confirmed influenza A virus (IAV) by PCR in serum from 18 cows on 3 affected dairy farms in California, USA . Our findings indicate the presence of viremia and might help explain IAV transmission dynamics and shedding patterns in cows. An understanding of those dynamics could enable development of IAV mitigation strategies. Source: US Centers for Disease Control and Prevention,  https://wwwnc.cdc.gov/eid/article/31/7/25-0134_article ____