Skip to main content

#Risk #assessment of 2024 #cattle #H5N1 using age-stratified #serosurveillance data

ABSTRACT

The highly pathogenic avian influenza virus A(H5N1) clade 2.3.4.4b has caused a human outbreak in North America since March 2024. Here, we conducted a serosurveillance study to determine the risk of A(H5N1) clade 2.3.4.4b (2024 cattle H5N1) to general population. In the initial screening of 180 serum specimens encompassing all age groups, 2.2% (4/180) had detectable neutralizing antibody (nAb) titers against reverse genetics-derived 2024 cattle H5N1, with all collected from older adults aged ≥60 years old. Further screening showed that 4.2% (19/450) of adults aged ≥60 years old had detectable nAb titers against the 2024 cattle H5N1. 80% (4/5) serum specimens with nAb titer of ≥40 had detectable HI titer, and there was a positive correlation between nAb titer and HA binding (r = 0.3325, 95% confidence interval 0.2477 to 0.4123; P < 0.0001). The nAb titer against seasonal H1N1 virus was 4.2-fold higher for ≥60 years old individuals with detectable H5N1 nAb titer than those ≥60 years old ones without (geometric mean titer: 89.3 [95% CI 42.9-185.7]) vs 21.3 [95% CI 17.3-26.1], P < 0.0001), but there was no statistically significant difference between H5N1 and H3N2 nAb titer. There was no difference in demographics, comorbidities and clinical frailty scores between individuals with detectable H5N1 nAb and those without. Our findings suggest that most individuals lack nAb response against 2024 cattle H5N1 and there is an urgency to develop and evaluate H5N1 vaccine or prophylactic monoclonal antibodies. Immune imprinting may be responsible for the cross neutralization between H5N1 and H1N1 among older adults.

Source: Emerging Microbes and Infections, https://www.tandfonline.com/doi/full/10.1080/22221751.2025.2497304

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...