Skip to main content

#Phylogenetic Analysis and Spread of HPAI #H5N1 in Middle Eastern Countries Based on #Hemagglutinin and #Neuraminidase Gene Sequences

Abstract

Highly pathogenic avian influenza (HPAI) A/H5N1 viruses threaten animal and human health worldwide. The first documented cases in the Middle East were reported in 2005; however, despite extensive phylogenetic studies, there is limited information on the transmission dynamics of the virus within this region. We analyzed HA and NA gene sequences from various hosts to address this gap and to understand the virus’s spread and evolution in the Middle East. We hypothesized that H5N1 transmission exhibits host-specific or geographically influenced clade structures in this region. This study traced transmission pathways of HPAI A/H5N1 through a phylogenetic and amino acid sequence analysis of HA and NA gene segments from isolates across different hosts in Middle Eastern countries, using the MUSCLE algorithm for alignments and MEGA11 software for phylogenetic analysis. Sequences were selected from NCBI’s virus database based on geographic and host diversity, including those from birds, humans, and other mammals, and were collected at different time points, predominantly after the early 2000s. An amino acid phylogenetic tree was also constructed to examine the conservation of key HA and NA protein residues, identifying distinct clades linked to specific countries and host species, suggesting a possible interspecies transmission and cross-border spread distinct between Egypt and neighboring countries. These findings underscore the role of migratory birds in regional transmission and point to the need for more targeted surveillance and biosecurity efforts, offering more genomic insights into the spread of HPAI A/H5N1 and contributing valuable information for future prevention strategies.

Source: Viruses, https://www.mdpi.com/1999-4915/17/5/734

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...