Skip to main content

#Pigeons exhibit low susceptibility and poor #transmission capacity for #H5N1 clade 2.3.4.4b high pathogenicity avian #influenza virus

Abstract

The ongoing panzootic of H5N1 high pathogenicity avian influenza virus (HPAIV) has caused the deaths of over half a billion wild birds and poultry, and has led to spillover events in both wild and domestic mammals, alongside sporadic human infections. A key driver of this panzootic is the apparent high viral fitness across diverse avian species, which facilitates an increased interface between wild and domestic species. Columbiformes (pigeons and doves) are commonly found on poultry premises and are highly connected to humans in urban settlements, yet relatively little is known about their potential role in contemporary HPAIV disease ecology. Here we investigated the epidemiological role of pigeons (Columba livia) by determining their susceptibility using decreasing doses of clade 2.3.4.4b H5N1 HPAIV (genotype AB). We investigated infection outcomes and transmission potential between pigeons and to chickens for each dose. Following direct inoculation, pigeons did not develop clinical signs, and only those inoculated with the highest dose shed viral RNA or seroconverted to H5N1-AB, revealing a MID50 of 10^5 EID50. Even in the high dose group, only low-level shedding and environmental contamination was observed, and low-level viral RNA were present in the tissues of directly inoculated pigeons, with no distinct pathological lesions. Pigeons did not transmit the virus to naive pigeons or chickens placed in direct contact. Overall, these findings suggest that pigeons have a low susceptibility to clade 2.3.4.4b H5N1 HPAIV and are less likely to significantly contribute to disease ecology, incursions into poultry, or pose a significant zoonotic threat.

Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2025.05.02.651910v1

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...