Skip to main content

In vitro and in vivo characterization of a #bat #merbecovirus with #ACE2- and #DPP4-independent cell entry

ABSTRACT

Betacoronaviruses, which have caused three human outbreaks within the last two decades, are thought to originate from bats, raising the concern that bat coronaviruses could cause a novel human outbreak in the future. To determine whether the bat merbecovirus EjCoV-3 strain, previously detected in Eptesicus japonensis in Japan, has the potential to infect humans, we analyzed its cellular entry mechanism. Cellular entry of EjCoV-3 via the spike protein requires protease treatment and is mediated by an unknown receptor, other than DPP4 or ACE2. We generated cultivable recombinant EjCoV-3 using bacterial artificial chromosome-based reverse genetics and found that it efficiently replicated in human respiratory and intestinal cell cultures as well as nasal ciliated epithelium in hamsters. These findings suggest that bat merbecovirus with ACE2- and DPP4-independent cell entry has the potential to cause human infections, highlighting the importance of extensive bat surveillance for pandemic preparedness.


IMPORTANCE

Betacoronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, have caused three significant outbreaks in the past two decades and are believed to have originated from bats. To investigate the potential for future outbreaks, we generated a Japanese bat-derived MERS-related coronavirus, designated EjCoV-3, using reverse genetics. Our results showed that EjCoV-3 does not utilize ACE2 and DPP4, cell entry receptors for SARS-CoV and MERS-CoV, as a means of infection. However, we found that EjCoV-3 is the first bat merbecovirus capable of efficiently replicating in human respiratory cells and the respiratory tract of hamsters. These findings provide new insight into the potential for MERS-related coronaviruses that do not use ACE2 and DPP4 to infect the human respiratory tract, highlighting the importance of preparedness for outbreaks caused by these viruses.

Source: Journal of Virology, https://journals.asm.org/doi/full/10.1128/jvi.00727-25?af=R

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...