Skip to main content

In vitro and in vivo characterization of a #bat #merbecovirus with #ACE2- and #DPP4-independent cell entry

ABSTRACT

Betacoronaviruses, which have caused three human outbreaks within the last two decades, are thought to originate from bats, raising the concern that bat coronaviruses could cause a novel human outbreak in the future. To determine whether the bat merbecovirus EjCoV-3 strain, previously detected in Eptesicus japonensis in Japan, has the potential to infect humans, we analyzed its cellular entry mechanism. Cellular entry of EjCoV-3 via the spike protein requires protease treatment and is mediated by an unknown receptor, other than DPP4 or ACE2. We generated cultivable recombinant EjCoV-3 using bacterial artificial chromosome-based reverse genetics and found that it efficiently replicated in human respiratory and intestinal cell cultures as well as nasal ciliated epithelium in hamsters. These findings suggest that bat merbecovirus with ACE2- and DPP4-independent cell entry has the potential to cause human infections, highlighting the importance of extensive bat surveillance for pandemic preparedness.


IMPORTANCE

Betacoronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, have caused three significant outbreaks in the past two decades and are believed to have originated from bats. To investigate the potential for future outbreaks, we generated a Japanese bat-derived MERS-related coronavirus, designated EjCoV-3, using reverse genetics. Our results showed that EjCoV-3 does not utilize ACE2 and DPP4, cell entry receptors for SARS-CoV and MERS-CoV, as a means of infection. However, we found that EjCoV-3 is the first bat merbecovirus capable of efficiently replicating in human respiratory cells and the respiratory tract of hamsters. These findings provide new insight into the potential for MERS-related coronaviruses that do not use ACE2 and DPP4 to infect the human respiratory tract, highlighting the importance of preparedness for outbreaks caused by these viruses.

Source: Journal of Virology, https://journals.asm.org/doi/full/10.1128/jvi.00727-25?af=R

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

Stability of #influenza viruses in the #milk of #cows and #sheep

Abstract In late 2023, H5N1 high pathogenicity avian influenza (HPAIV) started circulating in dairy cattle in the USA . High viral titres were detected in milk from infected cows , raising concerns about onwards human infections . Although pasteurisation was shown to effectively inactivate influenza viruses in milk, unpasteurised milk still poses a risk of infection, both from occupational exposure in dairies and from the consumption of raw milk. We therefore assessed how long influenza viruses could remain infectious for in milk without heat inactivation. We examined the stability of a panel of influenza viruses in milk , including a contemporary H5N1 HPAIV and a variety of other influenza A and D viruses. We incubated viruses in cows' milk under laboratory conditions : at room temperature to simulate exposure in dairies and at 4°C to simulate exposure to refrigerated raw milk. Following an isolated report of H5N1 viral RNA being detected in milk from a sheep in the UK , we also c...

#Evidence of #Viremia in Dairy #Cows Naturally Infected with #Influenza A {#H5N1} Virus, #California, #USA

Abstract We confirmed influenza A virus (IAV) by PCR in serum from 18 cows on 3 affected dairy farms in California, USA . Our findings indicate the presence of viremia and might help explain IAV transmission dynamics and shedding patterns in cows. An understanding of those dynamics could enable development of IAV mitigation strategies. Source: US Centers for Disease Control and Prevention,  https://wwwnc.cdc.gov/eid/article/31/7/25-0134_article ____