Skip to main content

#Risk #evaluation of newly emerging #flu viruses based on genomic #sequences and AI

Abstract

The recent resurgence of highly pathogenic avian influenza H5N1 viruses in North America and Europe has heightened global concerns regarding potential influenza pandemics. Despite significant progress in the surveillance and prevention of emerging influenza viruses, effective tools for rapid and accurate risk assessment remain limited. Here, we present FluRisk, an innovative computational framework that integrates viral genomic data with artificial intelligence (AI) to enable rapid and comprehensive risk evaluation of emerging influenza strains. FluRisk incorporates a curated database of over 1,000 experimentally validated molecular markers linked to key viral phenotypes, including mammalian adaptation, mammalian virulence, mammalian transmission, human receptor-binding preference, and antiviral drug resistance. Leveraging these markers, we developed three state-of-the-art machine learning models to predict human adaptation, mammalian virulence, and human receptor-binding potential, all of which demonstrated superior performance compared to traditional approaches such as BLAST, prior models, and baseline classifiers. In addition, a reference-based method was implemented to provide preliminary estimates of human transmissibility and resistance to six commonly used antiviral drugs. To facilitate broad accessibility and practical application, we developed a user-friendly web server that integrates both the molecular marker atlas and predictive tools for influenza virus phenotyping (available at: http://www.computationalbiology.cn/FluRisk/#/). This computational platform offers a valuable resource for the timely risk assessment of emerging influenza viruses and supports global influenza surveillance efforts.

Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2025.04.18.649608v2

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...