Skip to main content

#Genetic characterization of highly pathogenic avian #influenza #H5N8 virus isolated from commercial #poultry #farms in #Egypt reveals zoonotic potential

 


Abstract

Highly pathogenic avian influenza (HPAI) H5N8 virus, first identified in late 2016 in Egypt, continues to circulate and has replaced the previously dominant HPAI H5N1 virus of clade 2.2.1. In this study, HPAI H5N8 was detected on 23 commercial poultry farms in Egypt. Complete genome sequences of three isolates collected in 2021 were obtained using next-generation sequencing (NGS) and subjected to genetic characterization. Phylogenetic analysis showed these isolates to belong to clade 2.3.4.4b, comprising two genotypes: EA-2021-Q and EA-2020-A. Molecular analysis of the haemagglutinin (HA) protein revealed the presence of T156A and V538A substitutions in the duck isolate and an N183S substitution in the chicken isolate. Several additional nonsynonymous mutations were identified, including 147I and 504V in the PB2 protein, 127V, 672L, and 550L in the PA protein, 64F and 69P in the M2 protein, and 42S in the NS1 protein. Comparative analysis of HA antigenic sites between these isolates and the human vaccine against H5N8 revealed four nonsynonymous mutations: S141P, A154N, D45N, and V174I. Notably, the HA sequences of the studied isolates shared 98.7–99.4% amino acid sequence identity, and the NA sequences shared 96.1–97.1% identity to those of the 2.3.4.4b candidate human H5N8 vaccine strain (CVV) A/Astrakhan/3212/2020-like. These findings underscore the importance of continuous monitoring of the genetic evolution of avian influenza viruses to guide updates of candidate vaccine strains. Furthermore, the high similarity between the detected isolates and a zoonotic Russian H5N8 wild-type strain highlights the potential risk of cross-species transmission and possible human infection.

Source: 


Link: https://link.springer.com/article/10.1007/s00705-025-06479-z

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...