Skip to main content

#Remdesivir as a potent #antiviral against prototype and current #epidemic #Oropouche virus #strains (BeAn19991 and PE-IAM4637)

 


Highlights

• We generated a recombinant reporter OROV that expresses the eGFP fluorescent protein in infected cells.

• We found that remdesivir efficiently inhibited the replication of Oropouche virus (OROV) using this reporter OROV.

• We demonstrated strain-dependent differences in the replication efficiency of OROV.


Abstract

The Oropouche virus (OROV), an orthobunyavirus transmitted by biting midges, is the causative agent of Oropouche fever, which has caused multiple outbreaks in South and Central America. During the most recent epidemic in 2023–2025, more than 25,000 laboratory-confirmed cases were reported in Brazil, and no licensed antivirals have been reported to be effective date. In this study, we generated a recombinant OROV-expressing enhanced green fluorescent protein (rOROV/GFP) to facilitate rapid and sensitive antiviral evaluation. Growth kinetics demonstrated that rOROV/GFP replicated less efficiently than wild-type rOROV and that the historical prototype strain (BeAn19991) exhibited higher replication efficiency than the recent epidemic isolate (PE-IAM4637) in both Vero E6 and Huh7 cells. Using this system, we evaluated the antiviral activity of ribavirin, favipiravir (T-705), and remdesivir against OROV. All three compounds inhibited OROV replication in a dose-dependent manner, with remdesivir showing the greatest potency (IC₅₀ values of 0.31 µM). Taken together, our findings highlight remdesivir as a promising candidate for the treatment of Oropouche fever caused by OROV. Furthermore, we established rOROV/GFP as a powerful tool for antiviral drug screening.

Source: 


Link: https://www.sciencedirect.com/science/article/pii/S0168170225001583?via%3Dihub

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...