Skip to main content

#USA. #Update: #Genetic Sequencing Results for #Wisconsin Dairy #Herd Detection of Highly Pathogenic Avian #Influenza #H5N1 (#USDA, Dec. 20 '25): Clade 2.3.4.4b genotype D1.1

 


WASHINGTON, D.C., December 19, 2025

On December 14, 2025, USDA’s Animal and Plant Health Inspection Service (APHIS) announced the first detection of highly pathogenic avian influenza (HPAI) in a dairy herd in Wisconsin

On December 17, the National Veterinary Services Laboratories (NVSL) completed whole genome sequencing and confirmed that the virus is H5N1 clade 2.3.4.4b genotype D1.1. 

Analysis indicates that this detection is a new spillover event from wildlife into dairy cattle, separate from previous events.


Key Points

-- Most detections in U.S. dairy herds have resulted from movements linked to the original spillover event that occurred in the Texas Panhandle in late 2023, involving the B3.13 strain.

-- In early 2025, through the National Milk Testing Strategy, USDA detected two spillover events in Nevada and Arizona dairy herds. Both were identified early, and no further herd infections occurred through animal movements. These events involved the D1.1 strain.

-- The Wisconsin herd, also detected through the National Milk Testing Strategy, represents a new, separate spillover event and involves the D1.1 strain. At this time, no additional dairy herds have been identified as infected in association with this event.


Public Health and Food Safety

-- This detection does not pose a risk to consumer health or affect the safety of the commercial milk supply. 

-- Pasteurization effectively inactivates HPAI virus, and milk from affected animals is diverted or destroyed to prevent entry into the food supply. 

-- The Centers for Disease Control and Prevention (CDC) continues to consider the risk to the public to be low.


The Importance of Biosecurity

-- USDA remains committed to working with state partners to monitor, investigate, and mitigate the spread of HPAI in livestock. 

-- The detection does not change USDA’s HPAI eradication strategy. Biosecurity is still key to mitigating the risk of disease introduction or spread between premises.

APHIS recommends enhanced biosecurity measures for all dairy farms. Producers should immediately report any livestock with clinical signs, or any unusual sick or dead wildlife, to their state veterinarian.

Source: 


Link: https://www.aphis.usda.gov/news/agency-announcements/update-genetic-sequencing-results-wisconsin-dairy-herd-detection-highly

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...