Skip to main content

Genomic #Evolution of #Influenza A Virus During the 2024-2025 Season, the Johns Hopkins Health System: Antigenic Drift Reduces Serum Neutralization

 


Abstract

Introduction

Seasonal influenza causes significant global morbidity, mortality, and economic burden. Ongoing viral evolution can lead to vaccine mismatch and the emergence of antiviral resistance, highlighting the importance of genomic surveillance. The 2024–2025 influenza season was characterized by high incidence and increased hospitalizations.

Methods

We analyzed influenza A virus (IAV) genomes and clinical characteristics from the 2024–2025 season. Whole-genome sequencing was performed on 648 influenza A–positive clinical specimens collected between October 2024 and April 2025.

Results

Hemagglutinin (HA) sequences were recovered from 74.23% (481/648) of samples and used for subtyping and phylogenetic analysis. A(H1N1)pdm09 and A(H3N2) viruses co-circulated, representing 55.5% and 44.5% of cases, respectively. Among A(H1N1)pdm09 viruses, the HA1 substitution T120A, located near the Sa antigenic site, increased more than twofold compared with the prior season. Circulating A(H3N2) viruses belonged to multiple HA subclades and exhibited distinct amino acid substitutions at key antigenic sites. Neutralization assays using sera from individuals vaccinated with the 2024–2025 seasonal influenza vaccine demonstrated reduced neutralization of three dominant A(H1N1)pdm09 isolates and two A(H3N2) isolates compared with vaccine strains, consistent with antigenic drift. In addition, the neuraminidase substitution S247N, previously associated with reduced oseltamivir susceptibility, was detected in 13.9% of A(H1N1)pdm09 samples.

Discussion

These findings demonstrate ongoing antigenic drift and the presence of antiviral resistance–associated mutations during the 2024–2025 influenza season, underscoring the need for continued genomic surveillance to guide vaccine and antiviral strategies.

Source: 


Link: https://academic.oup.com/jid/advance-article/doi/10.1093/infdis/jiag069/8461561#google_vignette

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...