The #impact of clade B #lineage 5 #MERS #coronaviruses #spike #mutations from 2015 to 2023 on virus entry and replication competence
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging coronavirus that can cause zoonotic disease in humans with lethal severe viral pneumonia. Dromedary camels are the source of zoonotic infection. As of November 2025, MERS-CoV has resulted in a total of 2630 reported cases, 37% of these being fatal. The number of reported human cases has been on a decreasing trend since 2016 and reached a nadir during the COVID-19 pandemic. The reason for the reduction of cases is unclear and may be multifactorial. We hypothesized that mutations accumulating in the virus spike protein may have reduced zoonotic potential. Here, we investigate the impact of recently emerged virus spike-protein mutations on virus replication competence using pseudoviruses and replication-competent recombinant viruses. We found that virus spike variants detected in 2019 and some from 2023 show a reduced cell entry, lower viral replication and reduced fitness in human primary alveolar epithelial cells and multiple cell lines. All the MERS-CoV spikes tested showed a cell-entry pathway preference via the cell-surface TMPRSS2 route. Mechanistically, we showed the V530A mutation in the 2019 spike sequence had a reduced human DPP4 binding phenotype. Our data highlighted MERS-CoV spike mutations can modulate viral fitness in human cells and provide new insights to understand recent MERS epidemiology.
Source:
Link: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1013336
____

Comments
Post a Comment