Skip to main content

Efficient #replication of #influenza D virus in the #human #airway underscores zoonotic potential

 


Abstract

Influenza D virus (IDV), primarily found in livestock species, has demonstrated cross-species transmission potential, yet its threat to humans remains poorly understood. Here, we curated a panel of IDV isolates collected during field surveillance from 2011 to 2020 from swine and cattle to assess their ability to infect human airway cells as a proxy for zoonotic threat assessment. Using lung epithelial cell lines, primary well-differentiated airway epithelial cultures, and precision-cut lung slices, we demonstrated that IDV efficiently propagates in cells and tissues from the human respiratory tract, reaching titers comparable to human influenza A virus (IAV). Infection kinetics in primary porcine airway cultures and respiratory tissues mirrored those from human, suggesting similar infectivity across species. To define host responses to IDV infection, we evaluated innate immune sensing and downstream interferon signaling in human respiratory cells. IDV infection resulted in markedly reduced activation of interferon regulatory factor (IRF) signaling and diminished induction of interferon lambda 1 and interferon-stimulated genes compared to IAV, indicating inefficient activation of innate immune sensing pathways. However, IDV replication was potently restricted in interferon-pretreated cells, demonstrating sensitivity to interferon-mediated antiviral effector mechanisms once an antiviral state was established. Together, these findings show that IDV can efficiently infect the human airway while limiting innate immune sensing, a feature that may facilitate zoonotic spillover. Our study highlights the need for enhanced surveillance of IDV at the animal-human interface and provides a foundation for further investigation into its biology and potential for causing human infection and disease.


Competing Interest Statement

The author E.M.K. is currently employed by AbbVie Inc. The author was not affiliated with AbbVie Inc at the time of experiment design, data acquisition, or analysis.


Funder Information Declared

United States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA), 2025-39601-44639

The Enterprise for Research, Innovation, and Knowledge at The Ohio State University

Centers of Excellence for Influenza Research and Response, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Department of Health and Human Services, HHSN272201400006C, 75N93021C00016

National Institutes of Health, T35 5T35OD010977

National Institutes of Health, P30 CA016058

Source: 


Link: https://www.biorxiv.org/content/10.64898/2026.02.07.704474v1

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...