Skip to main content

Metabolomic Profiling of #Plasma Reveals Differential #Disease Severity #Markers in avian #influenza A(#H7N9) infection Patients

Highlights

• The characteristics of plasma metabolome in H7N9 patients were first revealed.

• It was discovered that lipid-like molecules were downregulated in death group.

• Metabolites of the tryptophan metabolic pathway were elevated in death group.

• The metabolite-based machine learning achieved an AUC of 0.929 on the test set.


Abstract

Objectives

Avian influenza such as H7N9 is currently a major global public health risk, and at present, there is a lack of relevant diagnostic and treatment markers.

Methods

We collected plasma samples from 104 confirmed H7N9 patients, 31 of whom died. Plasma metabolites were detected by UHPLC-HRMS, and a survival prediction model based on metabolites was constructed by machine learning models.

Results

A total of 1536 metabolites were identified in the plasma samples of H7N9 patients, of which 64 metabolites were up-regulated and 35 metabolites were down-regulated in the death group. The enrichment analysis of Tryptophan metabolism, Porphyrin metabolism and Riboflavin metabolism were significantly up-regulated in the death group. We found that most Lipids and lipid−like molecules were down-regulated in the death group, and Organoheterocyclic compounds were significantly up-regulated in the death group. A machine learning model was constructed for predicting mortality based on Porphobilinogen, 5-Hydroxyindole-3-acetic acid, L-Kynurenine, Biliverdin, and D-Dimer. The AUC on the test set was 0.929.

Conclusions

We first revealed the plasma metabolomic characteristics of H7N9 patients and found that a machine learning model based on plasma metabolites could predict the risk of death for H7N9 in the early stage of admission.

Source: International Journal of Infectious Diseases, https://www.ijidonline.com/article/S1201-9712(25)00181-X/fulltext

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...