Skip to main content

#Inflammatory, transcriptomic, and #cell fate responses underlying the #mammalian #transmission of avian #influenza viruses

 


ABSTRACT

Airborne transmissibility of avian influenza viruses (AIVs) in humans is considered an essential component of their pandemic risk. Although several viral factors regulating airborne transmission (AT) have been delineated, it is not known what, if any, responses at the respiratory epithelia are determinants of AIV AT. Using responses in the ferret nasal epithelium to a panel of H1N1 AIVs, we describe host responses that segregate with AT phenotypes. AIV infection upregulated interferon alpha and gamma responses and IL-6 JAK-STAT signaling and downregulated oxidative phosphorylation. Single-cell transcriptomics revealed that cellular genotoxic stress and NF-kB, interferon, and cell fate pathways differentiated host responses to AIVs with different transmissibilities. These responses culminated in greater AIV antigen-containing exudate and debris in the respiratory spaces of the nasal epithelium of ferrets inoculated with AT AIVs. More abundant CMPK2, SP100, and CXCL10 transcription in infected epithelia was a hallmark of AT viruses. Overall, our study reveals host responses associated with AIV infection and transmission in the nasal epithelium, the determinant anatomical site of influenza virus transmission.


IMPORTANCE

Airborne transmission (AT) is a critical component of the pandemic risks posed by avian influenza A viruses (AIVs). However, the host responses ultimately dictating transmissibility elicited by AIVs in the upper respiratory tract of mammals, the determinant site of influenza virus AT, are largely unknown. We identified host responses in the nasal epithelium of the upper respiratory tract differentially expressed in response to infection by AIVs of different mammalian ATs. Our data indicate that a definable host response was associated with AT of AIVs. These data would serve as an important basis for future mechanistic studies of AIV zoonosis and potentially have implications for understanding the mechanisms of transmission of respiratory viruses between humans.

Source: Journal of Virology, https://journals.asm.org/doi/full/10.1128/jvi.00647-25?af=R

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...