Skip to main content

#Mammalian #adaptation and zoonotic #risk of #influenza A viruses in companion #animals

 


Abstract

Importance

Since the early 2000s, companion animals emerged as unexpected players in influenza A virus ecology. Canine influenza viruses and the increasing detection of highly pathogenic avian influenza viruses in cats have raised concerns about their potential role as intermediate hosts for pandemic emergence. Their unique position at human-animal interface creates unprecedented opportunities for viral evolution and bidirectional transmission between humans and animals.

Observations

This review examined the transmission pathways and molecular adaptations of influenza A virus in companion animals. Cats primarily acquire infections through alimentary routes, including consumption of raw poultry and unpasteurized milk, as well as environmental exposure through hunting. Dogs transmit influenza viruses via respiratory droplets in high-density settings such as shelters and kennels. Canine influenza viruses demonstrate successful mammalian adaptation through accumulated mutations across multiple viral proteins, particularly in polymerase and hemagglutinin genes, enabling sustained dog-to-dog transmission. Feline isolates consistently exhibit mammalian adaptive mutations across geographically disparate outbreaks. Several molecular changes appear convergently in both species, suggesting shared evolutionary pressures at companion animal-human interface.

Conclusions and Relevance

Despite molecular evidence of active viral evolution, companion animals currently pose a limited pandemic risk owing to no sustained zoonotic transmission chains. Critical knowledge gaps remain regarding subclinical infection frequency, natural transmission efficiency, and host genetic factors that influence susceptibility. Surveillance should prioritize high-risk interfaces, including raw pet food supply chains and veterinary facilities, while maintaining the perspective of actual versus theoretical risks. Understanding companion animal influenza virus dynamics is essential for comprehensive pandemic preparedness strategies.

Source: 


Link: https://vetsci.org/DOIx.php?id=10.4142/jvs.25153

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...