Skip to main content

Characterization of a reassortant #H3N2 swine #influenza virus with 2009 pandemic internal #genes and enhanced potential for zoonotic #risk

 


Highlights

• A swine influenza virus H3N2 subtype was isolated during epidemiological survey.

• It is a complex and novel reassortant, and acquired accumulation of adaptive mutations.

• Both rescue and parent strains demonstrated efficient replication in mammalian cells.

• Key residues of the H3N2 HA collectively enhance the binding preference for human-type receptor.

• The rescued H3N2 cause significant pulmonary pathological damage in mice.


Abstract

Pigs serve as key "mixing vessels" for influenza A viruses, playing a critical role in cross-species transmission, while the H3N2 subtype represents an important lineage within the swine influenza virus (SIV) family. In this study, a novel reassortant H3N2 SIV strain, designated A/Swine/Jiangsu/YZ07/2024, was isolated from pigs exhibiting clinical symptoms in Northern Jiangsu, China during epidemiological survey. Genetic analysis revealed that the virus is a complex reassortant, with the internal genes (M, NP, PB1, PB2, PA) originated from the 2009 pandemic H1N1 lineage, the NS gene exhibiting a North American triple reassortant origin (human-avian-swine origin), and the HA and NA genes belonging to the human-like lineage. Although neither the rescued virus nor its parental strain could replicate effectively in chicken embryos and chicken cells, both demonstrated efficient replication in mammalian cells, reflected by the much higher polymerase activity in mammalian versus chicken cells. The key residues of HA protein (190D, 225D and 228S) collectively enhanced the binding preference for human-type α-2,6-linked sialic acid receptors, which was confirmed by receptor binding assays. Furthermore, mouse infection experiments using the rescued H3N2 demonstrated efficient viral replication in nasal turbinates and lung tissues, accompanied by significant pulmonary pathological damage. These findings indicate that the YZ07 strain, through the vast reassortment and accumulation of adaptive mutations, has acquired potential zoonotic risk, underscoring the importance of surveillance of swine influenza viruses.

Source: 


Link: https://www.sciencedirect.com/science/article/abs/pii/S0378113526000684?via%3Dihub

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...