Skip to main content

Impact of an #aminoacid #deletion detected in the #hemagglutinin (HA) #antigenic site of swine #influenza A virus field strains on HA antigenicity

 


ABSTRACT

Swine influenza A virus (swIAV) is an important pathogen with regard to both the swine industry and public health. The pandemic A(H1N1) 2009 outbreak was caused by the swine-origin pandemic A(H1N1) 2009 [A(H1N1)pdm09] virus. Several reports have shown that several amino acid substitutions in the hemagglutinin (HA) antigenic sites can alter HA antigenicity. However, the impact of the amino acid deletion at position 155 on HA antigenicity remains unknown. In this study, we have isolated 11 samples of swIAVs from seven pig farms in Japan and found an amino acid deletion at position 155 of the HA region in one of the isolates of the H1N2 subtype. To examine the impact of this amino acid deletion on viral replication and HA antigenicity, we generated recombinant influenza A viruses possessing the H1 HA gene encoding either an artificial insertion or deletion of glycine at position 155. The growth kinetics of these recombinant viruses in two different cell lines demonstrated that the effect of amino acid deletion at position 155 of H1 HA on viral replication is limited. In contrast, microneutralization assay-based neutralization titers revealed that amino acid deletion significantly altered HA antigenicity. These results demonstrate that a naturally occurring amino acid deletion at position 155 in an H1 HA antigenic site can markedly alter HA antigenicity with only a limited impact on replication in vitro, highlighting the need to monitor such variants in swine populations and to assess their zoonotic potential.

Source: 


Link: https://journals.asm.org/doi/full/10.1128/jvi.01820-25?af=R

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...