Skip to main content

From #Surfaces to #Spillover: Environmental #Persistence and Indirect #Transmission of #Influenza #H3N8 Virus

 


Abstract

Avian influenza viruses (AIVs) pose a significant zoonotic threat, with the emerging H3N8 subtype raising increasing concern due to sporadic human infections. Current strategies for risk assessment of novel AIVs primarily rely on genetic surveillance and isolated case reports, which provide limited insight into their cross-species transmission potential. However, these approaches may overlook critical phenotypic determinants, such as pathogenicity, transmissibility, and environmental persistence, that directly influence zoonotic risk. This study investigates the evolutionary relationships, receptor-binding properties, replication dynamics, pathogenicity in mice, transmission efficiency in guinea pigs, and environmental persistence of three H3N8 strains isolated from a live poultry market. All three H3N8 strains bound exclusively to α-2,3 sialic acid receptor and achieved 100% transmissibility among guinea pigs through direct contact. Notably, the environment-origin strain A09 exhibited an indirect contact transmission efficiency of 33.3%. The findings reveal strain-specific differences, with A09 displaying enhanced pathogenicity, broader transmission routes, and greater environmental persistence compared with A05 and A01. This perspective underscores the value of integrated profiling from genotype to phenotype combined with multi-route transmission and environmental persistence analyses to delineate the adaptive roadmap of H3N8 from avian to mammalian hosts and to assess its emerging infection risk. Future directions for surveillance and intervention were also discussed, highlighting their potential to strengthen preparedness against zoonotic influenza threats.

Source: 


Link: https://www.mdpi.com/2076-2607/13/12/2782

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...